
David Fikis
dfikis1@gsu.edu
November 2014

Item Response Theory with R
A Quick-Start Introduction to Modeling, Simulat ion, and Best Pract ices

Table Contents
Foreword.. 2

Preparation... 3

System Requirements ... 3

Installation .. 3

Step 1: Install VirtualBox .. 3

Step 2: Acquire Debian’s Install Disk Image ... 3

Step 3: Create a Debian Virtual Machine .. 3

Verifying Installation ..11

Features and Notes ...13

Saving a Session...13

Exporting a Virtual Machine ..14

Finding Shared Folders ...15

User Interface Details ...17

Presentation and Practice ..19

Review of Formulae ...19

Best Practices..20

Session 0: Basic R Tasks ..22

Session 1: Excel HW1..36

Session 2: Excel HW2..40

Session 3: Excel HW3..42

Session 4: Excel HW4..47

Session 5: Excel HW5..49

Session 6: Excel HW6..52

Evaluation and Expansion ..57

Table of Figures ..58

Table of Code ...60

Foreword

This guide is intended to offer the student of Item Response Theory some basic instruction and

operational knowledge sufficient to use the R statistical software package to complete introductory

exercises. Like any statistical endeavor, this small guide operates under a number of assumptions. The

validity of its operations and scope depend on the validity of said assumptions, and enumerating them

briefly helps the reader determine whether this guide matches the needs of the end-user. They are:

 No single body of instruction can be both sound and complete

 A theoretical understanding of tools used improves their use

 Problem-solving perspectives aid in conceptualizing tasks

The pedagogical approach of the guide is based on the content matter. R, like most statistical software,

has its own interface and syntax; interacting with this syntax forms the vast majority of an R experience.

Programming “languages” are just that – languages. This guide assumes some basic knowledge of IRT

and approaches the exercise of using R as that of a second language. Second-language acquisition,

particularly academic languages, benefit from ordered approaches, because such languages are often

procedural in addition to declarative exercises (Chamot and O’Malley 1987, 232). The following broad

categories and objectives describe the path of activities to follow in this guide:

Figure 1: Objectives

• Review system requirements
• Install necessary components

• Verify installation

Preparation

• Review relevant formulae
• Identify best practices

• Conduct basic IRT tasks

Presentation

• Test created functions and expressions
• Develop a plan for simulation

• Conduct and report simulation

Practice

• Replicate exercises from Hambleton, Swaminathan, and Rogers

Evaluation

• Identify external resources
• Consider sample exercises

Expansion

Preparation

System Requirements

Before getting into the details of using R for IRT, R will first need to be installed on the computer to be

used for the process. R will run on machines that wouldn’t run SAS or SPSS. R also boasts a particular

advantage among comparable software, detailed below:

Figure 2: Prices of Software

 SPSS SAS R
License Type 1-year 1-year GPL-2

Price >$5,000 >$5,000 $0

Considering that most student licenses under which we can acquire SPSS or SAS often forbid using them

for publications, R stands out as a very advantageous choice in terms of price. This advantage, however,

is not without opportunity costs: as you will see, the R experience is profoundly different from the

typical statistical software package. These differences, once appreciated, add to the virtue of R in

academic settings. For instance, the open source nature of R allows for publication of new libraries and

inspection of existing ones. While the initial lack of a user interface is intimidating to those who are used

to command-line interfaces, the resulting programmability and portability of code is very convenient.

Installation

One of the most important but least-considered properties of a statistical software package during

learning time is portability. If you have to work on another computer, how long will it take? Are you able

to count on consistent performance in six months? In a year? R is a command-line environment at its

heart, and within that command-line paradigm are a plethora of free, high-quality pieces of software.

Although it takes a bit more work up-front, creating a virtual machine for your R work allows you to have

a completely portable and self-contained environment. Much of the documentation for R is written

from the perspective of a Linux user, and if you’re not interested in reformatting your computer,

rebooting often, and other fun tasks, a virtual machine is how you can have your cake and eat it, too.

Cake isn’t cheap, though, and virtual machines do have some overhead. I would not recommend this on

sub-par laptops, but most desktop machines should be capable of handling the burden.

Step 1: Install VirtualBox

Head to https://www.virtualbox.org/ and visit the Downloads section. Download the “Virtualbox

platform package” for your operating system and install it like you would any application.

Step 2: Acquire Debian’s Install Disk Image

Now go to https://www.debian.org/ and visit the Net Install sub-section of the Getting Debian Section.

Select the i386 architecture and wait for the .ISO file to download.

Step 3: Create a Debian Virtual Machine

This is one of the more complicated parts of the guide, but the results will be worth it. A virtual

computer-within-a-computer will be created to house all of our work in a portable and consistent way;

performance should be consistent over various operating systems, and the machine offers some nice

conveniences for workflow that will be discussed later. We will make some decisions about

configuration that will be briefly, but not fully, explained.

https://www.virtualbox.org/
https://www.debian.org/
https://www.debian.org/distrib/netinst

Create a New Virtual Machine

Begin by opening the VirtualBox program if you have not already. With different versions and operating

systems, there’s a chance that your screen may appear different, but the general preview of the main

windows is depicted below. Click on the “New” button near the top left-hand portion of the screen or

click on the “Machine” menu and select the “New” option there.

Figure 3: VirtualBox Main Window

The next steps involve proceeding through the new machine creation dialogs. The machine will need a

name, in this case the name “R Environment” is chosen. Then, for aesthetic purposes, we can set basic

properties of the machine: set the type to “Linux,” then find “Debian (32-bit)” in the version drop-down

menu. The result is shown below: note the red spiral, a Debian trademark. Click “Next” when done.

Figure 4: Naming the New Machine

Next, determine how much RAM the Virtual Machine will be told it has. More is never a bad thing,

unless you jeopardize your host system’s ability to function by allocating too much. For the purposes of

this guide, use a relatively safe amount of 4096MB, shown below. If this appears to be too much on your

system, indicated by the red part of the slider bar, drop back to 2048MB. These sizes are 4 and 2

gigabytes, respectably. The result is shown below. Click “Next” when done.

Figure 5: Allocating RAM

Next, a virtal hard drive will be made for the machine. The dialog has three options. Select “Create a

virtual hard drive now” and click next:

Figure 6: Create a Virtual Hard Drive

Select the first hard drive option, a “VDI (Virtual Disk Image)” and continue:

Figure 7: Virtual Disk Image Specification

Select the “Fixed size” option. Although this will create more overhead on the host computer’s hard

drive at first, the performance benefits will help later:

Figure 8: Fixed Disk Size

Set the size of the virtual disk. For this guide, 12 gigabytes will provide plenty of overhead for any

additional software or file manipulation we might expect. Correcting for insufficient disk space is a

headache, so it’s generally a good idea to overestimate when it isn’t costly to do so. If you know that

your computer has two separate, physical hard drives, you may want to consider clicking on the folder

icon and relocating the virtual disk to a secondary hard drive for significant performance enhancement:

Figure 9: Disk Size to 12GB

Once this process finishes – it may take a few minutes – your virtual machine is built! Of course, it has

no software and will do nothing useful just yet, but you should be able to see it in the main window of

the VirtualBox program now.

Figure 10: Confirm VM Creation

Install Software

Now that our machine is built, we need to install the base Operating System as well as R. We will also

install a few utilities that will come in handy later on. Although some basic wizards exist, there’s a

chance that you might have accidentally already run your machine, so we’ll go through it manually.

Right-click on the “R Environment” list-item and select the “Settings” option in the context menu. From

there, select the “Storage” option. Select the CD-rom looking icon under the “Controller: IDE” list-item,

then click on the CD and arrow icon on the right edge of the dialog window to select the “Choose a

Virtual CD/DVD disk file” option. Find the Debian installation .ISO file downloaded earlier in this guide,

and select it. The result is shown below.

Figure 11: Mounting a CD-ROM Image

While we’re in the settings menu, let’s configure a Shared Folder. This will make moving files around

much easier between our Virtual Machine and our real computer. Select the “Shared Folder” item on

the left list, and click the little icon with a folder and green plus sign to add a shared folder. Select the

folder path like you would when selecting any directory: I usually go for a sub-folder off of the Desktop

for convenience. Give it an easy to remember name. In the example, we’ll call it “HOST.” Leave the read

only option unchecked. Check the auto-mount option. At this time, you may also want to add a shared

folder for Dropbox if you are a Dropbox user. Although we could install Dropbox on the virtual machine,

it is more efficient to access the files via your real computer’s directories. Click “Ok” when done to close

the settings dialog entirely. The results are shown below.

Figure 12: Shared Folders

We’re now ready to turn on the Virtual Machine. This will boot the machine through the operating

system installation, which may change over time. Generally speaking, the options can be left with all

their default values. Choose a hostname, account name, and password that are unique, but unused

elsewhere. Once the installation completes, you will be able to login. It will look not unlike the figure

below. More guidance on Operating System installation can be found at http://www.debian.org/.

http://www.debian.org/

Figure 13: First Login

The first task now is to prepare the machine to with some add-ons to make it run better. First, let’s

attach the Guest Additions CD-ROM by selecting the last option, “Install Guest Additions Image…” from

the Device menu. A pop-up dialog to confirm using Auto-Run will appear. Click cancel – we are not going

to do this the automatic way because of a bug in the existing setup. In the future, this bug might get

patched and this section of instructions may be obsolete. The dialog is pictured below.

Figure 14: The Guest Additions Auto-Run Dialog

From the Applications menu, select the Accessories option, then the Root Terminal application. You will

need to enter your password. From there, you will be in an administrator command prompt where we

can install all the software we will need. The result will look like the figure below.

Figure 15: Root Command Prompt

Within this command prompt, enter the following command (note that if you’re using a different

architecture than what we chose earlier, you may have to specify a different package) :

Code 1: Installing Kernel Headers for the i486 kernel

apt-get install linux-headers-i486

Choose “Y” or “yes” for a prompt if it confirms installing options. Then wait a while. Some errors about

“DKMS” and “modules” and versions may display. These are expected. Now we will run the Guest

Additions Setup from the “CD-ROM” we used earlier. This will take more than one line of code, and you

may have to confirm installation over existing versions.

Code 2: Installing VirtualBox Guest Additions

cd /media/cdrom
sh VBoxLinuxAdditions.run

While in this root prompt, let’s install the R components we will need to get right into things alongside a

handy text editor called geany. For this line, you will probably have to confirm the installation of

additional, required packages. That is okay. Enter the code below to get everything started:

Code 3: Install the R Base System, development files, and a text editor

apt-get install r-base r-base-dev geany

We also need to patch just a couple things pertaining to shared folders, assuming a username of “user”:

Code 4: Adding User to the Shared Folders groups

usermod -a -G fuse user
usermod -a -G vboxsf user

When that’s done, the safest thing to do now is to reboot the system to confirm that the bug is fixed:

Code 5: Restart the Machine

reboot

Verifying Installation

When the machine reboots and you log in, click the Applications menu. Under the “Programming” sub-

menu, select “geany” to open our IDE (Integrated Development Environment.) Geany is one of countless

programs whose mission statement is to bundle together many tasks programmers (such as you are

about to be) need to work efficiently. We will be using the IDE approach to honor one of the best

practices in our field: saving our syntax! The application will look like the figure below, but be warned

that future versions may have slightly different defaults and themes.

Figure 16: The geany IDE Initial View

We’re going to change a couple things about this initial view to better suit our purpose. First, near the

bottom-left hand screen is a “Terminal” tab. Click it. You should recognize what happens – we have

already been inside a terminal. Within this terminal, enter the following code:

Code 6: Starting R inside a Terminal

R --vanilla

The “--vanilla” option tells R to open a fresh, plain instance and to not save any changes made to the

workspace. This will help maintain consistency, but more advanced users may eventually find that the

vanilla option no longer satisfies their needs. If the command succeeds, you will see a new kind of

prompt along with some of the basic R startup information. It will look like the figure below.

Figure 17: Geany IDE with R

If that worked, we can continue to implement some best practices. The next two steps relate to the text

document portion of our IDE. First, click on the Document menu. Then select the Set Filetype sub-menu.

Select the Programming Languages sub-menu. Finish by selecting the “R Source” option. This will help

add a bit of color to our code to make it easier on the eyes. Now we need to save our file. Just click the

File menu, then the “Save As” option like normal. Select the Home option on the left to save in your

home directory. Give the file whatever name you like – conventionally, these types of files end in the .R

extension. The resulting dialog window is pictured blow. Confirm saving when done and remember,

going forward, to select File -> Save frequently.

Figure 18: Saving R Code

Features and Notes

Saving a Session

VirtualBox offers a tool that makes it easy to stop, set aside, and resume work within your IDE. From the

Machine menu in VirtualBox, select the Close option. Choices will appear. If you select “save the

machine state,” as shown below, your session will be saved not unlike if you were to hibernate your

computer. You will be able to resume working without having to restart applications.

Figure 19: Saving the Machine State

Once the state is saved, the machine will boot up right where it was left off as if one had suspended it. In

the main VirtualBox window, the option to start the machine will be present alongside the option to

“discard” the saved state and treat the machine as if it had been unplugged and whatever suspended

information had been retained would then be cleared from the machine.

Figure 20: Saved Machine State

Exporting a Virtual Machine

One of the fundamental advantages of using a virtual machine for statistics work is the portability of the

environment. Suppose a workstation was getting upgraded. Under the usual operating conditions, this

would mean hours of re-installing and re-licensing statistical software packages. With a virtual machine

and R, all we need to do is export the virtual machine and import it into a reinstalled VirtualBox

program. This can work between computers as well. From the main VirtualBox window, click on the File

menu, then select the “Export Appliance” option. A dialog will open to allow you to select which

machine to export.

Figure 21: Selecting a Machine for Export

Afterwards, confirmation of the location and format for the exported file will be displayed. The options

can be left at their defaults: using a .OVA extension, as the dialog details, keeps the exported file simple

to manage.

Figure 22: Selecting Export Options

An additional window concerning metadata will appear. All values can be left at their defaults:

Figure 23: Reviewing Export Metadata

A progress bar will be displayed as the export procedure executes. It will take several minutes as the

virtual hard disk is compressed to save on file size. The resulting file can be saved on any medium as a

backup of the virtual machine. To restore, select the “Import Appliance” option from the file menu.

Finding Shared Folders

If the “Auto-Mount” option was enabled as earlier and the proper user group fixes were applied, then

shared folders can be found on the virtual machine inside the “/media” directory. To find these files,

from the desktop select the “Places” menu, then the “Computer” option to open the file browser.

Figure 24: File Browser Main Window

Select the “File System” option on the left to view the root filesystem:

Figure 25: Root FileSystem

Then double-click on the “Media” file-folder icon to open the media folder. Inside, you will be able to

see the automatically attached shared folders leading to your host computer. In the example below, our

“Host” and “Dropbox” folders are visible.

Figure 26: Media Folder

This might not be convenient to do every time, so let’s create a “bookmark” to this location. After

opening the folder you would like to create a link to, click on the “Bookmark” menu, then select “Add

Bookmark.” The current directory will be added to the convenient list of clickable tabs on the left.

Figure 27: Bookmarked Directory

User Interface Details

Before closing out this section, there are a few interesting properties of the user interface to note. Some

readers may be used to using Control+S to save files and the Control+C, Control+V method of cut and

paste. In our machine as configured, the right control key is the “host” key. This key is used to send

commands to VirtualBox itself rather than to the machine it is emulating. For example, HOSTKEY+F will

make the virtual machine toggle between fullscreen modes. Remember to use the left control key for

copy/pasting inside VirtualBox.

Copying text to and from windows inside the Debian environment is extremely easy if your mouse has a

middle (scrolling) button. All you have to do is click and drag to select text from one location, left -click

once at the destination, and click the middle mouse button. This is called the primary buffer and is

incredibly convenient once you get the hang of it.

We will be going forward with the concept of constantly saving syntax in executable files. Possibilities

abound, however, so do not feel obligated to use this method forever. More advanced users may be

interested in learning about a concept called version control.1

Before continuing, take some time to play with the IDE a bit. Take risks and enter some commands into

the R terminal. Try changing the sizes of various parts of the window to suit your taste. Explore some of

the features by creating new documents and trying out the “Documents” tab next to the “Symbols” tab

near the top-left part of the screen. Every programmer has their own tastes for an IDE. There are cult

followings, jokes, and even intense newsgroup arguments on the subject! Don’t be afraid to experiment

and find your own visually appealing style before diving in further.

1 For a great overview, see Hartl, M. (2013). Ruby on Rails tutorial: Learn Web developments with Rails. Upper
Saddle River, NJ: Addison-Wesley. pp. 27-34

Presentation and Practice
Review of Formulae

In Item Response Theory, normally-distributed latent traits often referred to as abilities influence the

probability of correctly responding to an item according to the following 3-parameter formula.

Equation 1: 3-Parameter Item Response Model

𝑃(𝜃) = 𝑐 +
1 − 𝑐

1 + 𝑒−1.7𝑎(𝜃−𝑏)

The equation represents the probability of any one dichotomous item being answered correctly, and the

graph appears as a logistic (or sigmoid) function with ranges asymptotic of c and 1. Details of the role of

each variable are better discussed in course texts, but in short: a is a scaled discrimination factor, b is a

difficulty parameter, and c is a guessing parameter. The 1.7 is sometimes written as D, and it is a scaling

factor meant to make the model more closely represent the cumulative distribution function. To reduce

the model to the 2-parameter model, fix c at zero. To further reduce the 2-parameter to the 1-

parameter model, fix a at one.

Other equations will be used in this guide to fit models. The most basic is Q, the probability of one

dichotomous item being answered incorrectly:

Equation 2: Probability of Incorrect Response Q

𝑄(𝜃) = 1 − 𝑃(𝜃)

Assuming local independence, probabilities are cumulative. The probability of any one set of responses

is the product of all component scores. In plain language, if correct use P, but if false use Q, and find the

total product of these components. The likelihood function can be used to estimate θ for a given set of

responses when the item parameters are known. Often, the logistic function is maximized: this is

sometimes called log-likelihood estimation. Although logic can be used, the formula can also be

expressed algebraically as below, assuming U is the response of a dichotomous item.

Equation 3: Likelihood Function

𝐿(𝜃) = ∏ 𝑃
𝑖
𝑈𝑖 𝑄

𝑖

(1−𝑈𝑖)

𝑛

𝑖=1

When estimating parameters and abilities at the same time, the calculations are more complicated:

Equation 4: Likelihood Function with Unknown Abilities

𝐿(𝑢𝑁|𝜃, 𝑎, 𝑏, 𝑐) = ∏ ∏ 𝑃𝑖𝑗

𝑢𝑖𝑗𝑄𝑖𝑗

(1−𝑢𝑖𝑗)
𝑛

𝑗 =1

𝑁

𝑖=1

This method of estimation would be indeterminate if ability levels were not fixed in some way: the

number of estimated parameters is equal to three times the number of items (each parameter for the

item) plus the number of respondents (abilities.) Usually, abilities are scaled to a standard normal

distribution to avoid indeterminacy, creating a two-stage estimation process. In the first stage, abilities

are estimated initially based on score transformations, and then item parameters are estimated based

on the said ability estimates. In the second stage, abilities are estimated using the item parameters

derived from the first stage. These steps are repeated until changes in estimates are negligible. This

method is referred to as joint maximum likelihood estimation. The join maximum likelihood estimation

method has several disadvantages discussed in more detail in the literature alongside other alternatives

such as Bayesian estimation methods and the use of integration.2

Best Practices

Save Syntax: Stay in Syntax

Retaining and operating from a syntax file is a best practice whenever it is available, although basic data

exploration and learning exercises may not immediately benefit from the practice. Programs such as

IRTPRO and SAS have their own proprietary file formats and specifications to save analyses, and R is no

different. One advantage with R is that syntax is saved in plaintext documents requiring no special

formatting; these files are highly portable and can aid in adjusting or replicating work later.

In this guide, syntax will be prepared in a separate file that we reference in R: rather than directly

entering a series of commands, we will instead build a “script” that will be evaluated all at once. This will

more closely allow us to practice using R as we might find ourselves using it in the field. We will use the

source command in R, but there are multiple ways to execute pre-written R code, such as the RScript

utility: more advanced users interested in automating code may be interested in that.

In practice, you may get an error when trying to save your R syntax to a shared folder reading something

like, “error renaming temporary file: Text file busy.” If this is the case, then the shared folder mechanism

is not functioning at optimal speed to keep up with the file edits, like below:

Figure 28: Text file busy error

The solution is to just re-save your files to the desktop folder of your virtual machine:

2 See Hambleton, Swaminathan, and Rogers, Chapter 3, for further discussion

Figure 29: Saving to virtual machine desktop

You can then copy-paste from the desktop to the shared folder using the Places menu at the very top of

the screen, much like you might do in your normal computing environment, to select the desktop and

then right click to copy the file:

Figure 30: Copying a file

R Prefers Vectors

R is built on a framework that offers great speed and readability of code based on a vector approach. In

traditional program environments used in statistical analysis, we often make use of loops to iterate

through replications or values in arrays. In R, however, we can often reference these arrays directly to

take advantage of speed and flexibility. This is probably best explained with some illustrations. We will

explore this during our first R practice session.

Style of Content

The main material will be presented in a series of independent sessions suitable to following along with

the Excel and book-based work in the introductory item response theory course. By completing these

sessions, the first major portion of coursework can be completed in R with no other required software.

Session 0: Basic R Tasks

Objectives

In this session, we will:

 Confirm our IDE functions

 Briefly examine variables and functions

 Install and load an R add-on package

 Execute basic descriptive statistical operations

 Import some data

 Create a graph

Procedures

Let’s boot up our Virtual Machine and log into our linux desktop. It should look something like this:

Figure 31: Debian Desktop

Then we open geany, our IDE, by selecting it from the Applications -> Programming menu:

Figure 32: Starting geany IDE

Figure 33: IDE Loaded

Using the down arrow at the bottom left of the interface, select the Terminal option:

Figure 34: Terminal View

Being an R instance by issuing the command to open a “vanilla” R interface: using a vanilla interface will

help us ensure that we develop code that is more likely to work from place-to-place.

Code 7: Starting R in vanilla mode

R --vanilla

Figure 35: IDE with R Terminal

Now we can immediately begin some best practices: let’s save the blank text file so that we can start to

keep track of our work. Generally speaking, there are many ways to name files. Personally, I find adding

the date and time to files aids in tracking versions when other options aren’t available. More advanced

users may wish to read about using a utility called git to keep track of code.

Below, we save the file to our “sf_HOST” folder we configured earlier. This will allow our syntax file to be

accessed and maintained on our main computer, outside of the virtual machine. This can be useful for

sharing and editing without having to boot up the machine; remember that this means the file will not

be included in exports of the virtual machine, though. R syntax generally uses a .R extension, and using

that will help our IDE interpret and highlight our code.

Figure 36: Saving a Syntax File

Let’s get out first lines written. In R syntax, the hash tag (#) is used to mark comments. Because we

might be sharing this file, or we might simply forget what we were doing, some of the best things to

include at the top of the file are a name, a last updated date, and a brief description of what the syntax

does. For example, in our session 0 file, we could begin with:

Code 8: Session 0 Syntax

#R IRT Tutorial Session 0
#Last updated 11/11/2014
#Purpose: This syntax will complete the basic introductory tasks

As you type, you may notice that having saved the file with a .R extension enables syntax coloring. That’s

normal and one of the handy features of a robust IDE. There are many features that more advanced

users may enjoy exploring.

For now, let’s enter our first evaluable lines of code. R operates with named, case sensitive variables and

function calls (that also, technically, are variables.) Although variable typing is a complex topic, let’s just

dive right in with our first variable assignment and function calls:

Code 9: Session 0 Syntax

foo <- “hello world”
print(foo)

Before doing anything else, save your progress. Now is the time to build this good habit. In the first line,

our variable name is on the left-hand side of a “<-“ operator, which can be thought of as an arrow. On

the right-hand side, the quote-offset “hello world” acts as a string of characters. This string is then

directed into the foo variable. Variable assignment can become very complex. The second line calls the

“print” function: know functions by their use of parentheses. Inside parentheses, we are able to specify

function parameters. Here, we just tell “print” what to print – the foo variable.

Figure 37: Code Highlighting after File Save

Let’s run our code. We’ll do that by clicking on the terminal window. Type “foo” to see what the “foo”

variable currently is set to: you should see that it has no value. Then, call the “source” function. This

source function will be how we call up our typed syntax. Inside the source function, we need to specify

the file. We know the file name and location based on the title bar of our IDE. In the case of the

example, it is “/media/sf_HOST/session0_20141111_0400.R” and, when entered, will evaluate. R has

tab completion: you may want to try pressing tab while typing the file name to see it in action. After we

call our source function, we’ll see the results – the print command printing the foo variable. Let’s

conclude this batch of code by entering “foo” again in the terminal: as we can see, we have made

changes to the R workspace with our syntax.

Figure 38: Session 0 Code Output

Let’s add a few more comments to explain what’s happening. In complex, multi-step syntax such as

simulations, it is important to document the code both for one’s own memory and for sharing:

Figure 39: Adding some comments

This is a good point to highlight a critical paradigm in R: within the R environment, nearly everything is

conceived as a vector. When we view our “foo” variable, a “[1]” is visible. This is R telling us that foo is a

n array with a length of 1 whose content happens to be “hello world.” We can learn more about this at

the same time as we can review one of the most important commands in R. Within the terminal, issue

the help command by looking up the “c” function as follows:

Code 10: R help file access

?c

Figure 40: An R help file

You can use the up and down arrows to move around in the help file, and you can click and drag the

divider to resize the terminal window. To exit the help file and return to the R terminal, just press the

“q” key to “quit” the help file view. In the help file for the “c” function, we learn that it pastes all its

arguments together: this function is one of the most convenient ways to enter arrays of information.

Let’s edit our syntax a little to see what this means and looks like. Add the following lines:

Code 11: Session 0 Syntax

#Assign an array of strings to a variable and print the variable
#Then, examine the lengths of two variables
bar <- c(“hello”,”world”)
print(bar)
print(length(foo))
print(length(bar))

In the R terminal, you can press the left control key and L to “clear” the screen. You can also press the

up arrow to scroll through the command history. Try using this to issue the “source” command again

and observe the output:

Figure 41: Syntax output

We can see that the second variable, entered as a vector, has a length of two. We can also see that the

length command’s output itself is a vector with a length of one. Variables in R are most like the columns

of a spreadsheet. If we cluster a number of these columns together, we can use a structure in R known

as a data frame. A data frame is extremely useful and will be how we convey most information to and

from R for IRT tasks. You can issue the “?data.frame” command to learn more from R’s internal help

files, but these discuss the topic in more depth that practical knowledge may require. We will discuss

data frames more in a little while.

Before that, however, let’s implement another set of best practices. While typing the “source” function

in R, you may have noticed that the path to our file is typed out in full. In more advanced syntax, this can

sometimes create a problem. What if, for example, someone is running a different R environment where

the path to their shared folder is different? We can solve this problem before it starts by taking

advantage of variables and functions to implement a best programming practice. Add the following line

of code near the top of our syntax, just below the first batch of comments:

Code 12: Relative folder location setup

#Save our preferred path location to a variable
MY_PATH <- “/media/sf_HOST/”

To go more deeply into R and use if efficiently, we will need to install some add-on packages. R has a

network of archives and packages that we can take advantage of called CRAN (Comprehensive R Archive

Network.) There are indexes of packages, some 6000+ currently, sorted by both name and publication

date. If you need something fancy, browsing this list is one of the ways to find it. Another is to use “Task

Views” which contain digests and some annotations on packages. For example, the psychometrics task

view contains a section specifically discussing item response theory packages. 3 Using that information

alongside some of the knowledge we already know, let’s install a few packages. Issue the following code

inside the R terminal:

Code 13: Installing R add-ons via CRAN

install.packages(c(“R.Utils”,”ltm”))

You might recognize the “c” function: as you might guess, we’re using it to install two packages at once.

If this is the first time we’ve added packages, we might be prompted to use a personal library and to

select a mirror. Using a personal library is fine, and for mirror selection pick whatever’s geographically

closest to you.

3 http://cran.r-project.org/web/views/Psychometrics.html

http://cran.r-project.org/web/views/Psychometrics.html

Figure 42: Beginning package installation

It is often necessary to use personal libraries because of the security settings within a linux environment.

More advanced users who want to know more may wish to research the “root” account and the “sudo”

linux command for more information on these subtleties. Confirm creating a directory, if necessary, and

select an appropriate mirror:

Figure 43: Confirming personal directories, selecting a mirror

Surprise! If you followed the instructions to the letter, you will have just encountered an error:

Figure 44: R is case sensitive!

This encounter was purposefully engineered to give you your first, relatively harmless encounter with

just how picky R syntax can be when it comes to capitalization. Issue the command again differently:

Code 14: Package installation, continued

install.packages(c(“R.utils”,”ltm”))

This time, the process should complete without any errors. We now have the packages installed:

Figure 45: Successful package installation

In order to use these packages, we need to load them into the R environment. Execute the following

code in the R terminal, but also be sure to add it to our syntax, just below declaring “MY_PATH.” Now is

also a good time to remember to save your syntax after editing it.

Code 15: Loading packages

#Load libraries
library(ltm)
library(R.utils)

Figure 46: Libraries loaded

Let’s return to the subject of data frames before continuing. A data frame has a name and sub-columns

combined with the scalar “$” character, such as Attendance$Name. Let’s examine the “summary”

command as well as briefly touch on R’s powerful vector-based notation to do some rudimentary

comparisons. When we loaded the ltm library, a special data frame, Abortion, as added. This data frame

is provided with the ltm package to allow for replication and testing of code. Such publication of

datasets is a common occurrence in the R community: support forums often use these published sets of

data to generate example code. Let’s take a look at it by entering some code into the R terminal

window:

Code 16: Summary command

summary(Abortion)

Figure 47: Summary command output

Let’s see how this can be more useful by introducing the concept of saving R output to files. Right now

we know how to import pre-written code, but the output is stuck inside an R terminal window. How do

we get that information into files we can share and archive? Let’s try adding the following line to our

code just after we declare MY_PATH:

Code 17: Saving textual output to a file

#Output textual information to a file
sink(file = paste(MY_PATH,"session0_output1.txt",sep=""),
append = FALSE, split = FALSE)
print(summary(Abortion))
print(descript(Abortion))
sink()

Figure 48: Capturing output

This code also shows an important side note: R does not always mind if code stretches over multiple

lines. The “sink” function allows output to be sunk to a different channel than the default output, and in

this instance we instruct it to be saved to a file. The “print” command is necessary around our code to

make sure it is properly displayed and rerouted. The final “sink” command closes the connection to the

file. We can open the output file in our IDE to see what it looks like, and switch the left sidebar from the

“Symbols” to the “Documents” view to be more useful to us:

Figure 49: Session 0 Output File

There is an opportunity for further refinement here. If this file were to be opened in Windows, the

default application would be notepad, and a peculiar Windows-only standard would result in it looking

like this:

Figure 50: Default syntax output appearance in windows notepad

If you want, this is an easy issue to fix inside our IDE. In the Document menu, select the “Set Line

Endings” sub-menu, then the “Convert and Set to CR/LF (Win)” and save the document.

Figure 51: Fixing line endings

Figure 52: Fixed line endings

We’re all set for basic R work except for two more important features. Let’s start by looking at a

convenient way to get external data into R. Suppose we have an online source data, such as:

http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv. We can easily bring that into R.

Code 18: Downloading a file conveniently

download.file(“http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv”, destfile=”Class10.csv”)

Once the file is on our system, we can read it into an R data frame. There are many different ways to do

this depending on the filetype: R can read from all kinds of things, including .CSV and .XLSX files. Check

out the “read.table” function’s help files for more advanced information. For now, we’ll load the Class10

data. There’s an interesting option we’ll be setting: because the Class10.csv file’s first column is the ID of

the participant, we can use that ID to set the row name. Doing so will make it more convenient later.

Code 19: Loading a CSV into an R dataframe

Class10 <- read.csv(“Class10.csv”, row.names = 1)

Setting “row.names” to 1 allows for using the first column of the file to be used to name the rows.

That’ll keep later graphs from charting up the ID field. Speaking of charts, let’s look at that now. R can

make some really crisp-looking graphics, but if you can’t get them into your report or manuscript, what

use are they? Let’s take a look, first, at how to get a graph, then let’s save it to a file that can be taken

into other programs. Before we do this, make sure to load up the “ltm” library if you haven’t already:

Code 20: Loading the ltm library

library(ltm)

Now let’s jump right into this from an IRT perspective. We’ll talk more about these functions later, but

let’s plot the item characteristic curves for the Class 10 data using the Birnbaum 3-parameter model

estimated with likelihood-maximization and standardization of ability parameters:

Code 21: Generating 3PL ICCs

plot(tpm(Class10,type="latent.trait"), type ="ICC", zrange=c(-3,3), legend = TRUE)

This is a nested function: without the “plot” function, the first argument is a call to the “tpm” function.

Within the tpm function we reference the Class10 object and set an option, type, to “latent.trait.” You

http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv

can always check the help pages for a function to reference the arguments and their uses: in this case,

we choose “latent.trait” in order to get a proper 3PL as we expect it. The plot function has several

options, too. We can get different types of plots from an IRT model function, and we select the ICC. We

set the range from the traditional -3 to 3, and for legibility we let the plot know we want to see a legend.

Figure 53: ICCs for the Class10 3PL

To save it to a file, we use a set of functions not unlike the “sink” function we used earlier to save text

output. Many options are available, but we’ll use the “png” function for flexibility.

Code 22: Saving Class10 3PL ICC to a file

png(file=”Class10ICC.png”)
plot(tpm(Class10,type="latent.trait"), type ="ICC", zrange=c(-3,3), legend = TRUE)
dev.off()

Remember to make use of your virtual shared folders to conveniently position files.

Figure 54: Exported image

That was a lot of information. Remember, you can always use the “?” tool inside R to reference a

function, and the online communities supporting R are incredibly diverse and in-depth.4

4 See http://stats.stackexchange.com/questions/tagged/r for a great example of the active R support community

http://stats.stackexchange.com/questions/tagged/r

Session 1: Excel HW1

Source

Classical Item Analysis

For those who would really like to understand CTT, the best way is to actually

calculate indices yourself. Calculate p-index, D-index, point biserial, coefficient

alpha, KR20, and KR21 for data shown in Table 1 in Harris’ article

(http://coeweb.gsu.edu/coshima/EPRS8410/1p2p3p.pdf) using Excel. You also

get to see how indices based on CTT and those based on IRT are different or

similar.

Objectives

In Excel HW1, we must:

 Construct a response data frame

 Evaluate the p-indices

 Evaluate the D-indices

 Calculate point-biserial correlations

 Evaluate coefficient alpha

 Find the KR20 and KR21 statistics

Procedures

First, because the source data is within a PDF, let’s create the dataframe manually:

Code 23: Excel HW1 Data Frame

HW1Test <- data.frame(
Item1 = c(1,1,1,1,1,1,1,1,1,1),
Item2 = c(0,1,0,0,1,0,1,0,0,1),
Item3 = c(1,1,0,1,1,1,0,0,0,1),
Item4 = c(0,1,0,0,1,0,0,0,0,0),
Item5 = c(0,1,0,0,1,1,1,0,0,1),
Item6 = c(1,1,0,0,1,1,1,1,1,0),
Item7 = c(1,1,1,0,1,1,1,1,0,0),
Item8 = c(0,0,0,0,1,1,0,0,0,1),
Item9 = c(1,1,1,0,1,1,1,1,1,1),
Item10 = c(0,1,0,0,1,0,0,0,0,0),
Item11 = c(0,0,1,0,1,0,0,0,0,0),
Item12 = c(1,0,1,1,1,1,0,0,0,1),
Item13 = c(1,1,0,0,1,0,0,0,0,0),
Item14=c(0,0,0,0,1,1,0,0,1,0))

Fortunately, because this is dichotomous data, the p-values are simply the means of each item. We can

make use of R’s vast libraries to make these next steps much easier. Using the knowledge you gained

http://coeweb.gsu.edu/coshima/EPRS8410/1p2p3p.pdf

earlier, install the “CTT” package. We will load it and use some of its functions, and we will make sure

the output is sent to a text file we could, for example, submit for credit. Setting the “width” to 1000 via

the “options” function makes it so that wide lists, such as the P-values, don’t line-break in our output.

Code 24: Excel HW1 P-Indices

library(CTT)
options(width=1000)
sink(file = "ExcelHW1.txt",append = FALSE, split = TRUE)
cat("P Values:\n")
print(reliability(HW1Test,itemal=TRUE)$itemMean)
sink()

Issue “?reliability” to get information on the function and what “values” we can get by using the scalar

(dollar symbol) not unlike a dataframe. We use the “cat” function with a line break (\n) character to

make nice-looking text output, while we use “print” for certain values based on default formatting .

When in doubt, test both and use what looks most suitable. You’ll find that we can also get our point-

biserial correlations and co-efficient alpha this way. Add the following to our code before the “sink()”

closes the output file. Remember “\n” for line breaks.

Code 25: Excel HW1, continued

cat("Point-Biserial Correlations:\n")
cat(round(reliability(HW1Test,itemal=TRUE)$pBis,2),"\n")
cat("Coefficient alpha:\n")
cat("Coefficient alpha:",round(reliability(HW1Test,itemal=TRUE)$alpha,2),"\n")

The rest is just a little trickier, because it is found in different sources. What remains are the KR-20 and

KR-21 evaluations as well as the D indices. This is a good opportunity to introduce R’s ability to computer

numbers like a calculator in addition to performing functions. Let’s build our own KR -20 function using

the common formula. Since R uses vectors, this is a much more fluid and convenient process than Excel.

Instead of defining a cell area such as “A2:A10,” we can instead just refer to the vector. The code below

may appear more intimidating than it would inside our IDE due to parenthetical highlighting.

Equation 5: KR-20, KR21, and D-index

𝑟𝐾𝑅20 =
𝑘

𝑘 − 1
(1 −

∑ 𝑝𝑖𝑞𝑖
𝑘
𝑖=1

𝜎𝑥
2

), 𝐷 =
𝑝𝑢𝑝𝑝𝑒𝑟 − 𝑝𝑙𝑜𝑤𝑒𝑟

𝑛𝑢𝑝𝑝𝑒𝑟 + 𝑛𝑙𝑜𝑤𝑒𝑟

Code 26: KR-20, KR-21

cat("KR-
20:",round((length(reliability(HW1Test,itemal=TRUE)$itemMean)/(length(reliability(HW1Test,itemal=T
RUE)$itemMean)-1))*(1-(sum(reliability(HW1Test,itemal=TRUE)$itemMean*(1-
reliability(HW1Test,itemal=TRUE)$itemMean))/reliability(HW1Test,itemal=TRUE)$scaleSD^2)),2),"\n")
cat("KR-
21:",round((length(reliability(HW1Test,itemal=TRUE)$itemMean)/(length(reliability(HW1Test,itemal=T
RUE)$itemMean)-1))*(1-
((reliability(HW1Test,itemal=TRUE)$scaleMean*(length(reliability(HW1Test,itemal=TRUE)$itemMean)-
reliability(HW1Test,itemal=TRUE)$scaleMean))/(length(reliability(HW1Test,itemal=TRUE)$itemMean)*re
liability(HW1Test,itemal=TRUE)$scaleSD^2))),2),"\n")

The above code is hard to read for humans. Commonly, scalars that are frequently used over and over

can often be set to temporary variables. While this is a practical tool that you will see and use, there are

risks of changing the data structure type or inadvertently referring to an old or unwanted piece of

information. It’s safer to observe where and how the source data is being retrieved at this stage, but

more advanced users concerned with the speedy execution of code might be interested in rewriting the

above equations using the following hint:

Code 27: Advanced Coding Hint

P <- reliability(HW1Test,itemal=TRUE)$itemMean
q<- 1-p

The last part, calculating D-indices, introduces us to one of the most powerful and attractive features of

R: vector searching. Often, tutorials may recommend using the “subset” function, but it might help

demonstrate R’s power by using the following code:

Code 28: D-Index

upper <- HW1Test[score(HW1Test)$score >= quantile(score(HW1Test)$score,2/3),]
lower <- HW1Test[score(HW1Test)$score <= quantile(score(HW1Test)$score,1/3),]
cat("D Indices:\n")
print(round((reliability(upper,itemal=TRUE)$itemMean -
reliability(lower,itemal=TRUE)$itemMean)/(length(upper$Item1)+length(lower$Item1)),digits=2))

What’s new here is the use of a pair of brackets with text inside them. Take note of the comma: when

we use brackets after a data frame (like HW1Test) we pass two arguments inside them. The first can be

thought of as a row selector and the second can be thought of as a column selector. Try executing the

first argument in the selector:

Code 29: D-Index Upper Group Selector

score(HW1Test)$score >= quantile(score(HW1Test)$score,2/3

You will notice the result is a vector of 10 true/false (or logical) values. Where the value is true, the

score has been evaluated to be at or above the upper third of the distribution based on the median.

Where these values are true, then, the corresponding rows of our data frame will be returned. To select

columns, we could construct a selector such as “c(“Item1”,”Item2” …)” but it is more convenient to

leave the field blank: when blank, all columns in the dataframe will be returned.

Final Results

Code 30: Excel Homework 1 Input

#Excel HW 1
HW1Test <- data.frame(
Item1 = c(1,1,1,1,1,1,1,1,1,1),
Item2 = c(0,1,0,0,1,0,1,0,0,1),
Item3 = c(1,1,0,1,1,1,0,0,0,1),
Item4 = c(0,1,0,0,1,0,0,0,0,0),
Item5 = c(0,1,0,0,1,1,1,0,0,1),
Item6 = c(1,1,0,0,1,1,1,1,1,0),
Item7 = c(1,1,1,0,1,1,1,1,0,0),
Item8 = c(0,0,0,0,1,1,0,0,0,1),
Item9 = c(1,1,1,0,1,1,1,1,1,1),
Item10 = c(0,1,0,0,1,0,0,0,0,0),
Item11 = c(0,0,1,0,1,0,0,0,0,0),
Item12 = c(1,0,1,1,1,1,0,0,0,1),
Item13 = c(1,1,0,0,1,0,0,0,0,0),
Item14=c(0,0,0,0,1,1,0,0,1,0))
library(CTT)
options(width=1000)
sink(file = "ExcelHW1.txt",append = FALSE, split = TRUE)
cat("P Values:\n")
print(reliability(HW1Test,itemal=TRUE)$itemMean)
cat("Point-Biserial Correlations:\n")
cat(round(reliability(HW1Test,itemal=TRUE)$pBis,2),"\n")
cat("Coefficient alpha:",round(reliability(HW1Test,itemal=TRUE)$alpha,2),"\n")
cat("KR-
20:",round((length(reliability(HW1Test,itemal=TRUE)$itemMean)/(length(reliability(HW1Test,itemal=T

RUE)$itemMean)-1))*(1-(sum(reliability(HW1Test,itemal=TRUE)$itemMean*(1-
reliability(HW1Test,itemal=TRUE)$itemMean))/reliability(HW1Test,itemal=TRUE)$scaleSD^2)),2),"\n")
cat("KR-
21:",round((length(reliability(HW1Test,itemal=TRUE)$itemMean)/(length(reliability(HW1Test,itemal=T
RUE)$itemMean)-1))*(1-
((reliability(HW1Test,itemal=TRUE)$scaleMean*(length(reliability(HW1Test,itemal=TRUE)$itemMean)-
reliability(HW1Test,itemal=TRUE)$scaleMean))/(length(reliability(HW1Test,itemal=TRUE)$itemMean)*re
liability(HW1Test,itemal=TRUE)$scaleSD^2))),2),"\n")
upper <- HW1Test[score(HW1Test)$score >= quantile(score(HW1Test)$score,2/3),]
lower <- HW1Test[score(HW1Test)$score <= quantile(score(HW1Test)$score,1/3),]
cat("D Indices:\n")
print(round((reliability(upper,itemal=TRUE)$itemMean -
reliability(lower,itemal=TRUE)$itemMean)/(length(upper$Item1)+length(lower$Item1)),digits=2))
sink()

Figure 55: Excel Homework 1 Output

P Values:
 Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12 Item13 Item14
 1.0 0.4 0.6 0.2 0.5 0.7 0.7 0.3 0.9 0.2 0.2 0.6 0.3 0.3
Point-Biserial Correlations:
NA 0.49 0.43 0.75 0.63 0.26 0.34 0.54 0.33 0.75 0.3 0.08 0.62 0.3
Coefficient alpha: 0.8
KR-20: 0.83
KR-21: 0.74
D Indices:
 Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12 Item13 Item14
 0.00 0.07 0.08 0.04 0.09 0.03 0.03 0.07 0.03 0.04 -0.01 0.03 0.07 0.02

Extension Material: Fizz Buzz

Statisticians often wind up being, in some part, programmers. Within the programming world,

credentials are often diverse and hard to assess. One of the common challenges faced in filling a

position is determining whether or not the candidate, after having been in a computer science

classroom for a few semesters, is actually able to problem solve with programs. In the industry, one of

the common tasks is to give applicants a test or to ask for sample code. One of these tests borrows from

a classic educational activity: the fizzbuzz game. As a certain web source suggests, “the ‘Fizz-Buzz test’ is

an interview question designed to help filter out the 99.5% of programming job candidates who can't

seem to program their way out of a wet paper bag.” Trying out the Fizz-Buzz test in your favorite

statistical package, in addition to R, is an extremely worthwhile exercise.

FizzBuzz is a game used to teach about common multiples. The game is played by counting from 1

upwards, and the rules are to say “fizz” when the number is divisible by 3 and “buzz” when the number

is divisible by 5. For numbers divisible by both 3 and 5, the correct response is both “fizz” and “buzz.” A

typical sequence would sounds like, “1 2 fizz 4 buzz fizz 7 8 buzz fizzbuzz.” The bonus task for this

session is to create a fizz buzz routine in R. Here are two hints:

Code 31: Session 1 Bonus Hint 1

fizzbuzz = data.frame(input = seq(1,10))
fizzbuzz$output[fizzbuzz$input > 5] <- “foo”
print(fizzbuzz)

Code 32: Session 1 Bonus Hint 2

?”%%”
?”&”

After completing this session, you should be well on your way to a confident R proficiency. Remember,

there are lots of tutorials and help files available both inside R (each help file classically ends with

example code) and on the internet.

Session 2: Excel HW2

Source
Excel HW 2
Chapter 2 Homework: ICCs

Consider the following three items with given item parameters:

Item 1: a = 1.0 b = -.5 c = 0
Item 2: a = 1.2 b = 0 c = 0
Item 3: a = 1.5 b = 1 c = .20

1. Draw item characteristic curves for those three items using a computer program such as Excel.

2. By looking at the graph, for someone with theta = 1, which item has the highest probability of
being answered correctly by this person?

3. Again, by looking at the graph, which item appears to be most discriminating for someone with
theta = -1?

Objectives

This exercise is fairly straightforward. In R, we just need to plot Item Characteristic Curves.

Procedures

This is a very appropriate time to discuss one of the features of R more akin to traditional programming

languages than what some statistical software packages make easily available. In R, we can define and

call our own functions just like we’ve been using those available in the core and supplementary

packages. A function, as you have already seen, can have arguments and returns values. Let’s create our

own custom function to replicate Birnbaum’s 3-parameter model:

Equation 6: The 3-Parameter Model

P(θ)=c+
1-c

1+e-1.7a (θ-b)

Code 33: A Custom 3PL Function

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
P(0,1,0,0)

As you can see in the second line, we can issue the new “P” function to calculate a probability. Using this

functionality, we can now write some code to make the ICCs that looks easy to read. We’ll break the

graphing process into separate steps to have more control over the output.

Code 34: Generating ICCs

png(file="Excel-HW2.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,1),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e^(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(-.5,1,0,seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),P(0,1.2,0,seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),P(1,1.5,.2,seq(-3,3,.001)),type="l",col="blue")
legend(x = -3, y = 1, lwd = 1, legend=c("B=-
.5,A=1,C=0","B=0,A=1.2,C=0","B=1,A=1.5,C=.2"),col=c("red","green","blue"))
dev.off()

Final Results

Code 35: Excel HW2 Input

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
png(file="Excel-HW2.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,1),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e^(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(-.5,1,0,seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),P(0,1.2,0,seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),P(1,1.5,.2,seq(-3,3,.001)),type="l",col="blue")
legend(x = -3, y = 1, lwd = 1, legend=c("B=-
.5,A=1,C=0","B=0,A=1.2,C=0","B=1,A=1.5,C=.2"),col=c("red","green","blue"))
dev.off()

Figure 56: Excel HW2 Output

Session 3: Excel HW3

Source
Use the three items from Chapter 2 Homework.
Item 1: a = 1.0 b = -.5 c = 0
Item 2: a = 1.2 b = 0 c = 0
Item 3: a = 1.5 b = 1 c = .20

1. Estimate theta for Person A whose answer pattern is {1 1 0}.
Note {1 1 0} indicates Person A answered Items 1 and 2 correctly, and Item 3 wrong.

2. Estimate theta for Person B whose answer pattern is {1 0 0}.

3. Estimate theta for Person C whose answer pattern is {0 0 0}.

Objectives

There are three very general estimation styles for item response functions: parameter, ability, and joint

estimation of both. In this exercise, we conduct ability estimation with a set of given parameters and

responses: this will be done via examining the likelihood function of responses given parameters for

each ability. Although we could write our own, custom function for likelihood as we did previously for

item characteristic curves, it will be easier and more robust to call in a new R library.

Extension Material: Updating the Virtual Machine’s Operating System and R Software

After examining the CRAN repository and checking some articles for citations, it can be found that the

person parameter library “PP” will fit out needs. Installing packages is something we’ve already done,

but for reference:

Code 36: Installing and Loading the Person Parameter Library

install.packages(“PP”)
library(PP)

Surprise! You are very likely to encounter an error.

Figure 57: Error: R version insufficient for library

This is a normal problem for popular linux software distributions: the “package” maintained by the

operating system is not the most up-to-date version of software published by the author. Fortunately,

this is easy to fix in the Debian environment we have installed.5 To patch the issue, open up a root

terminal and issue the following command:

Code 37: Adding a Package Repository to the Operating System

add-apt-repository 'deb http://mirrors.nics.utk.edu/cran/bin/linux/debian wheezy-cran3/'
apt-key adv --keyserver keys.gnupg.net --recv-key 381BA480
apt-get update
apt-get dist-upgrade

The above commands will add CRAN’s repository to what our virtual machine’s operating system checks

for updates. Then, we add an encryption verification key to our operating system for secure updates.

We refresh our local database of software with the most updated version, and then we install any

necessary updates. You might see something like:

Figure 58: Software Upgrade Messages

You can verify these updates. They might take a few minutes. Sometimes, rebooting is necessary

depending on what all gets upgraded in the system. Since virtual machines are fairly efficient, it doesn’t

hurt to just reboot on principle. After re-opening our IDE, we can see that R has indeed been upgraded:

5 See http://cran.r-project.org/bin/linux/debian/README for a detailed discussion

http://cran.r-project.org/bin/linux/debian/README

Figure 59: R Upgraded

The first thing we should do, now, is to upgrade our packages:

Code 38: Upgrading Internal R Packages

update.packages()

Procedures

After that’s done, we can go back to installing the Person Parameter package:

Code 39: Installing the Person Parameter Library

install.packages(“PP”)
library(PP)

From here, it’s just a matter of calling up the appropriate functions provided by this library and sending

the appropriate arguments to these functions. We can record our output using our separate syntax and

output approach so far. The documentation for this package is available online, and like many pieces of

R documentation, it is both in-depth and a little challenging to get into at first for newcomers. R writers

usually use conventions for naming and terms with a different, programmatic perspective than many

psychometric articles and texts sometimes do; developing the understanding that a “hierarchical linear

model” and a “mixed-effects model” are referring, in general, to similar concepts is part of developing

an ear for the literature.6

If we just fed a dataframe containing responses to the person parameter function, we wouldn’t be giving

it everything it needs: it requires knowing the difficulty (b, we call it difficulty, too) and slope (a, we call

it discrimination) parameters. If we include these in the same dataframe as extra columns, though, the

function will get confused. This is a great time to introduce the concept of attributes and to showcase

one of their applications. As you have seen, a data frame object contains vectors of data of varying types

referenced with the scalar (“$”) operator, such as “foo$bar.” Applying a function to a dataframe often

propagates that function throughout its columns. Attributes are a way of attaching data without putting

it in that propagating schematic structure. Let’s create our responses dataframe with columns

representing responses to each item, and then we will set attributes representing properties of each

item suitable for the Person Parameter function:

6 See http://cran.r-project.org/web/packages/PP/vignettes/intro_pp.html for an in-depth estimation guide

http://cran.r-project.org/web/packages/PP/vignettes/intro_pp.html

Code 40: Creating the appropriate data objects

hw3test <- data.frame(
item1 = c(1,1,0),
item2 = c(1,0,0),
item3 = c(0,0,0)
)
attr(hw3test,difficulty_parameter) <- c(-.5,0,1)
attr(hw3test,discrimination_parameter) <- c(1,1.2,1.5)
attr(hw3test,guessing_parameter <- c(0,0,.2)

Although it’s possible to keep the parameters in their own variables, it’s quite cleaner (and therefore

safer) to keep them associated with the data. For more information, issue the following commands:

Code 41: Examining the workspace

ls()
str(hw3test)

The “ls” command lists objects in the current environment. In the linux environment, “ls” is an essential

command to check the file contents of a directory. The “str” command gives a string-like output of the

object’s information. In the case of our hw3test data frame, this includes the columns of item data and

attributes representing item parameters. In both cases, the row-column orientation is vector-oriented:

the first position of each item vector refers to the first respondent, and the first position of each

parameter vector refers to the first question. It can be easy to forget this and accidentally transpose.

Now that we’ve taken a little bit of time to get the right, add-on packages and build our data, all we

need to do is call the functions. In traditional software packages, this inevitably involves clicking around

and having additional windows appear. In R, all it involves is calling a function with some arguments:

Code 42: Ability Estimation

PP_4pl(
respm = as.matrix(hw3test),
thres = attr(hw3test,"difficulty_parameter"),
slopes = attr(hw3test,"discrimination_parameter"),
lowerA = attr(hw3test,"guessing_parameter"),
type = "mle"
)

In the above example, we used line-breaks to make the list of arguments more readable as we have

been for dataframes. In the help files for this function (try “?PP_4pl” to see them yourself) the “respm”

argument must be a matrix, so we use the “as.matrix()” function to coerce the data.frame into the

appropriate object type. For the item parameters, we use the “attr()” function to access the data we

stored as attributes of the hw3test object. Finally, the “type” argument is referenced in the help file. We

use maximum likelihood estimation in this instance. This showcases some of R’s potential: we can just

change that argument from “mle” to “wle” to switch to weighted maximum likelihood.

Remember to save syntax and to use the “sink()” function to structure our code to place its output in a

file suitable for submission and archival. It can be useful to add comments to functions to reference

their arguments if you do not plan on committing them to memory and want to avoid continually

opening up the help files. In addition, although the help files are accessible inside R, it’s also possible to

have a dual setup browsing the online help files via the CRAN repository.7 More advanced users may

want to experiment with using the desktop workspace features to have more than one “desktop.”

7 http://cran.r-project.org/web/packages/

http://cran.r-project.org/web/packages/

Final Results

Code 43: Excel HW3 Input

#Excel HW 3
library(PP)
hw3test <- data.frame(
item1 = c(1,1,0),
item2 = c(1,0,0),
item3 = c(0,0,0)
)
attr(hw3test,"difficulty_parameter") <- c(-.5,0,1)
attr(hw3test,"discrimination_parameter") <- c(1,1.2,1.5)
attr(hw3test,"guessing_parameter") <- c(0,0,.2)
options(width=1000)
sink(file = "ExcelHW3.txt",append = FALSE, split = TRUE)
print(str(hw3test))
print(PP_4pl(
respm = as.matrix(hw3test),
thres = attr(hw3test,"difficulty_parameter"),
slopes = attr(hw3test,"discrimination_parameter"),
lowerA = attr(hw3test,"guessing_parameter"),
type = "mle"
))
sink()

Code 44: Excel HW3 Output

'data.frame': 3 obs. of 3 variables:
 $ item1: num 1 1 0
 $ item2: num 1 0 0
 $ item3: num 0 0 0
 - attr(*, "difficulty_parameter")= num -0.5 0 1
 - attr(*, "discrimination_parameter")= num 1 1.2 1.5
 - attr(*, "guessing_parameter")= num 0 0 0.2
NULL
Estimating: 3pl model ...
type = mle
Estimation finished!
 estimate SE
[1,] 0.7092 1.1133
[2,] -0.5901 1.2786
[3,] -Inf NA

Session 4: Excel HW4

Source
Using data from Table 4.3 (p. 74), create a graph like Figure 4.5.
Use three models:
One-parameter model: b = 0.17
Two-parameter model: b = 0.18; a = 0.56
Three-parameter model: b = 0.76; a = 1.23; c = .25

Table 1: HSR Table 4.3

θ p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-2 20% 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

-1 25% 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

0 40% 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1

1 75% 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1

2 90% 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1

Table 2: Model Parameters

 Model a b c

1P 1 0.17 0

2P 0.56 0.18 0

3P 1.23 0.76 0.25

Objectives

Because we already know how to plot item-characteristic curves, the only additional work required in

this task is to plot observed points for comparison against each of the three models.

Procedures

First, let’s create a data frame representing the observed P values and ability levels:

Code 45: Creating a dataframe for graphing

hw4test <- data.frame(
ability = c(-2,-1,0,1,2),
p_obs = c(.2,.25,.4,.75,.9)
)

Let’s then pull in code we developed for drawing ICCs in HW2:

Code 46: Drawing ICCs

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
plot(0,0,xlim=c(-
3,3),ylim=c(0,1),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e^(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(.17,1,0,seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),P(.18,.56,0,seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),P(1.23,.76,.25,seq(-3,3,.001)),type="l",col="blue")
legend(x = -3, y = 1, lwd = 1, legend=c("B=-
.17,A=1,C=0","B=.18,A=.56,C=0","B=.76,A=1.23,C=.25"),col=c("red","green","blue"))
dev.off()

Above, we’ve changed the arguments sent to the custom “P()” function to fit our new curves. We also

need to add the observed data as points without a line, and we should add it to our legend. The two

changed lines will look like so:

Code 47: New line drawing, modified legend

lines(hw4test$ability,hw4test$p_obs,type="p",col="orange")
legend(x = -3, y = 1, lwd = 1, legend=c("B=-
.17,A=1,C=0","B=.18,A=.56,C=0","B=.76,A=1.23,C=.25",”Observed
Data”),col=c("red","green","blue",”orange”))

Final Results

Code 48: Excel HW4 Input

#Excel HW 4
P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
hw4test <- data.frame(
ability = c(-2,-1,0,1,2),
p_obs = c(.2,.25,.4,.75,.9)
)
png(file="Excel-HW4.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,1),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e^(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(.17,1,0,seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),P(.18,.56,0,seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),P(1.23,.76,.25,seq(-3,3,.001)),type="l",col="blue")
lines(hw4test$ability,hw4test$p_obs,type="p",col="orange")
legend(x = -3, y = 1, lwd = 1, legend=c("B=-
.17,A=1,C=0","B=.18,A=.56,C=0","B=.76,A=1.23,C=.25","Observed
Data"),col=c("red","green","blue","orange"))
dev.off()

Figure 60: Excel HW4 Output

Session 5: Excel HW5

Source
Use the three items from Chapter 2 Homework.
Item 1: a = 1.0 b = -.5 c = 0
Item 2: a = 1.2 b = 0 c = 0
Item 3: a = 1.5 b = 1 c = .20

1. Draw a test characteristic curve for those three items using a computer program such as Excel.

2. Draw item information curves for those three items using a computer program such as Excel.

3. By looking at the graph, for someone with theta = 1, which item has the highest information?

4. Draw a test information curve for this three-item test. For what range of thetas dose this
test offer most information?

Objectives

New types of graphs must be made in this assignment. We will create functions for the test

characteristic function, item information curves, and test information curves. We will prepare graphs.

Procedures

Since the test characteristic curve is just an amalgamation of item characteristic curves, it’s easy to add

together values using item characteristic curve functions we’ve already made to produce the output:

Code 49: Making a TCC function

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
test5tcc <- function(ability) {
return (P(-.5,1,0,ability)+P(0,1.2,0,ability)+P(1,1.5,.2,ability))
}

Graphing the result is easy, if we re-use what we’ve done before:

Code 50: Graphing a TCC

plot(0,0,xlim=c(-3,3),
ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),
main=expression("Test Characteristic Curve"))
lines(seq(-3,3,.001),test5tcc(seq(-3,3,.001)),type="l",col="red")
legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))

Note that we change a few parameters, such as the “ylim” argument to the “plot()” function and the “y”

argument to the “legend” function to better graph out the different domain of this function. The next

part gets interesting. Information functions can be expressed precisely using derivatives. R isn’t meant

to be a computational algebra environment – programs like Mathematica and open source languages

like Maple or Julia do that – but R can handle simple derivations well enough to justify their use.

In order to take advantage of R’s ability to calculate derivatives, we need to supply it with clean, simple

mathematical formulae in the form of objects called “expressions.” We’ve already seen these before

when dealing with making our ICC formula look nice in a plot. There’s more than one way to proceed,

but let’s use a somewhat easy-to-read approach for now. We will define the item characteristic curves

as mathematical expressions, and then we will define the item information curves as functions making

use of the derivative to replicate the following formula.

Equation 7: Item Information Function

𝐼(𝜃) =
𝑃′ (𝜃)2

𝑃(𝜃)𝑄(𝜃)

Code 51: Creating the Item Information Functions

item1icc <- expression(0+(1-0)/(1+exp(-1.7*1*(ability+.5))))
item2icc <- expression(0+(1-0)/(1+exp(-1.7*1.2*(ability-0))))
item3icc <- expression(.2+(1-.2)/(1+exp(-1.7*1.5*(ability-1))))
item1iic <- function(ability) {eval(D(item1icc, "ability"))^2/(eval(item1icc)*(1-eval(item1icc)))}
item2iic <- function(ability) {eval(D(item2icc, "ability"))^2/(eval(item2icc)*(1-eval(item2icc)))}
item3iic <- function(ability) {eval(D(item3icc, "ability"))^2/(eval(item3icc)*(1-eval(item3icc)))}

The amount of parentheses may be daunting at first. Feel free to use line-breaks and even tab notation

if that helps.8 Now that we have “function” type objects returning the item information statistic for a

particular set of items, we can go ahead and graph them using the same techniques we’ve already used:

Code 52: Graphing some IICs

plot(0,0,xlim=c(-
3,3),ylim=c(0,1.5),type="l",xlab=expression(theta),ylab=expression(I(theta)),main=expression("Item
Information Curves"))
lines(seq(-3,3,.001),item1iic(seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),item2iic(seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),item3iic(seq(-3,3,.001)),type="l",col="blue")
legend(x = -3, y = 1.5, lwd = 1, legend=c("Item 1","Item 2","Item 3"),col=c("red","green","blue"))

The last portion, test information graphing, is simple: we’ve already combined item probabilities, so

combining item information shouldn’t seem too novel as far as the R code is concerned:

Code 53: Making the Test Information Curve

test5tic <- function(ability) {
return (item1iic(ability)+item2iic(ability)+item3iic(ability))
}
plot(0,0,xlim=c(-
3,3),ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression("Test
Information Curve"))
lines(seq(-3,3,.001),test5tic(seq(-3,3,.001)),type="l",col="red")
legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))

All that remains is to tie these all together with “png()” and “dev.off()” function calls to ensure our

output is appropriately separate from our syntax and in a format we could turn in or use elsewhere.

8 See https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml for an in-depth discussion

https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml

Final Results

Code 54: Excel HW5 Input

#Excel HW 5
P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))
}
test5tcc <- function(ability) {
return (P(-.5,1,0,ability)+P(0,1.2,0,ability)+P(1,1.5,.2,ability))
}
png(file="Excel-HW5A.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression("Test
Characteristic Curve"))
lines(seq(-3,3,.001),test5tcc(seq(-3,3,.001)),type="l",col="red")
legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))
dev.off()
item1icc <- expression(0+(1-0)/(1+exp(-1.7*1*(ability+.5))))
item2icc <- expression(0+(1-0)/(1+exp(-1.7*1.2*(ability-0))))
item3icc <- expression(.2+(1-.2)/(1+exp(-1.7*1.5*(ability-1))))
item1iic <- function(ability) {eval(D(item1icc, "ability"))^2/(eval(item1icc)*(1-eval(item1icc)))}
item2iic <- function(ability) {eval(D(item2icc, "ability"))^2/(eval(item2icc)*(1-eval(item2icc)))}
item3iic <- function(ability) {eval(D(item3icc, "ability"))^2/(eval(item3icc)*(1-eval(item3icc)))}
png(file="Excel-HW5B.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,1.5),type="l",xlab=expression(theta),ylab=expression(I(theta)),main=expression("Item
Information Curves"))
lines(seq(-3,3,.001),item1iic(seq(-3,3,.001)),type="l",col="red")
lines(seq(-3,3,.001),item2iic(seq(-3,3,.001)),type="l",col="green")
lines(seq(-3,3,.001),item3iic(seq(-3,3,.001)),type="l",col="blue")
legend(x = -3, y = 1.5, lwd = 1, legend=c("Item 1","Item 2","Item 3"),col=c("red","green","blue"))
dev.off()
test5tic <- function(ability) {
return (item1iic(ability)+item2iic(ability)+item3iic(ability))
}
png(file="Excel-HW5C.png")
plot(0,0,xlim=c(-
3,3),ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=expression("Test
Information Curve"))
lines(seq(-3,3,.001),test5tic(seq(-3,3,.001)),type="l",col="red")
legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))
dev.off()

Figure 61: Excel HW6 Output

Session 6: Excel HW6

Source
DIF Analysis
Conduct a DIF analysis using data “dn211dif.csv” (a 10-item test with N = 200) between Group 1 and
Group 2. Use the 2PL model. Identify DIF items.

Objectives

We need to conduct a DIF analysis.

Procedures

Things are starting to get more complex, but that’s actually a good thing. The more practical the

problem, the more likely it is that someone has already written an R package to tackle it. As we’ve seen,

some tasks such as ability estimation are made very easy when existing packages already supply

functions, but we can also approach things by making functions of our own.

We’ll start by reading in the source data file. Assuming you already have it in a particular location – in

the case of the example below, it’s been placed in the /media/sf_HOST shared folder – bringing the data

into R is easy! There are many advanced configuration options that can be browsed in the help files.

Code 55: Importing Data

hw6data <- read.csv("/media/sf_HOST/dn211dif.csv")
summary(hw6data)

There are some challenges with this data from its source that are revealed when we use the

“summary()” function. First, the dataset contains ID and group assignments: while this isn’t directly a

problem, as we’ve seen before, it can sometimes fool add-on packages into treating these columns like

data responses. Second, items 7-10 use lower-case while items 1-6 use uppercase letters at the start of

each name. We can clean both of these issues with just a few commands.

Code 56: Some data cleaning

hw6test <- hw6data[TRUE,c(3,4,5,6,7,8,9,10,11,12)]
colnames(hw6test) <-
c("Item1","Item2","Item3","Item4","Item5","Item6","Item7","Item8","Item9","Item10")
attr(hw6test,"group") <- hw6data$Group

In the first line, we use the selector brackets we’ve seen before. Remember, the first argument tells R

which rows to select: by giving it one TRUE value, we quickly tell R that every row is okay for selection.

The second argument tells R which columns to select. You can refer to them by name with quotes or just

select the number, starting with 1. In this case, we use numbers for efficiency. The second command

just assigns new names to the resulting columns that use a consistent capitalization scheme. Now we

have a “clean” data frame, hw6test, and the original source unmodified in hw6data.

One of the most amazing features of R is the limitless, free potential of its package system. This is also

one of its greatest challenges for users looking to perform some advanced statistical analysis. Rather

than re-invent the wheel itself, which should we use? This is where the CRAN Task View and other help

file browsing comes in handy. If we use SPSS, IRTPRO, or other software packages, we are essentially

trusting the developer to have understood and appropriately programmed the mathematics. With R

packages, help files usually cite sources and the original programming language is freely available for

inspection and validation. Let’s make use of the “difR” package and go forward by using Raju’s area. 9

9 See http://cran.r-project.org/web/packages/difR/difR.pdf for the relevant help files.

http://cran.r-project.org/web/packages/difR/difR.pdf

Remember, first we must load the “difR” package. That might require installing the package first.

Code 57: Install difR package

install.packages(“difR”)
library(difR)

This might take a little longer than previous installations because of the number of co-dependencies.

The help file for difR gives a lot of information. The “difRaju” function has the following arguments:

Figure 62: difRaju documentation excerpt

difRaju(Data, group, focal.name, model, c=NULL, engine="ltm", discr=1,
irtParam=NULL, same.scale=TRUE, alpha=0.05, signed=FALSE, purify=FALSE,
nrIter=10, save.output=FALSE, output=c("out","default"))

Let’s build our function call to handle these arguments. In help files, generally, an argument listed such

as “purify=FALSE” implies that the default value for the argument is FALSE: if we do not set it, it’s false.

This means we could avoid setting it if we wanted it to be false, but for this example we’ll be redundant:

Code 58: Calling the difRaju function

difRaju(
 Data = as.matrix(hw6test),
 group = attr(hw6test,"group"),
 focal.name = 1,
 same.scale = FALSE,
 model = "2PL"
)

Notice that we did not request purification and specified that items aren’t yet scaled between groups.

This is the “anchor all items” step in IRTPRO translated into R. The call will give the following output:

Figure 63: difRaju initial output

Detection of Differential Item Functioning using Raju's method
with 2PL model and without item purification

Type of Raju's Z statistic: based on unsigned area

Engine 'ltm' for item parameter estimation

Raju's statistic:

 Stat. P-value
Item1 -1.1545 0.2483
Item2 -1.4217 0.1551
Item3 2.2838 0.0224 *
Item4 1.3486 0.1775
Item5 0.8661 0.3865
Item6 -0.0554 0.9558
Item7 -1.5553 0.1199
Item8 2.9140 0.0036 **
Item9 -0.9817 0.3263
Item10 0.6810 0.4959

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Detection thresholds: -1.96 and 1.96 (significance level: 0.05)

Items detected as DIF items:

 Item3
 Item8

Output was not captured!

Extension Materials: DRY

In programming, a common maxim is “DRY” or “Don’t Repeat Yourself.” We’re about to make a lot of

graphs – why copy-paste code that might need changing and create a big headache? Let’s build some

functionality to replicate work without having to replicate effort.

Code 59: Replicating Plots

makeplot <- function(item) {
x1 <- plot(group_1, type = "ICC", item = item)[,1]
y1 <- plot(group_1, type = "ICC", item = item)[,2]
x2 <- plot(group_2, type = "ICC", item = item)[,1]
y2 <- plot(group_2, type = "ICC", item = item)[,2]
png(file=paste("Excel-HW56-Item",item,".png",sep=""))
plot(0,0,xlim=c(-
3,3),ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=paste("Differentia
l Item Functioning\nItem",item))
lines(x1,y1,type="l",col="red")
lines(x2,y2,type="l",col="blue")
legend(x = -3, y = 3, lwd = 1, legend=c("Group 1","Group 2"),col=c("red","blue"))
dev.off()
}
sapply(seq(1,10),makeplot)

The above code will have a few odd outputs in the console, but that’s not important at this stage and

level of work. What we do here is take advantage of R’s data scoping to extract the X- and Y- coordinates

of each ICC, then display them in a new, advantageous way based on our specifications. We build a

function that can do this for any given item, then send instructions to do so with items 1-10.

Final Results

Code 60: Excel HW6 Input

#Excel HW6
library(difR)
library(ggplot2)
hw6data <- read.csv("/media/sf_HOST/dn211dif.csv")
hw6test <- hw6data[TRUE,c(3,4,5,6,7,8,9,10,11,12)]
colnames(hw6test) <-
c("Item1","Item2","Item3","Item4","Item5","Item6","Item7","Item8","Item9","Item10")
attr(hw6test,"group") <- hw6data$Group
hw6dif <- difRaju(
 Data = as.matrix(hw6test),
 group = attr(hw6test,"group"),
 focal.name = 1,
 same.scale = FALSE,
 model = "2PL"
)
sink(file = "ExcelHW6.txt",append = FALSE, split = TRUE)
print(hw6dif)
sink()
group_1 <- tpm(
 data = hw6test[attr(hw6test,"group") == 1,],
 type = "latent.trait",
 constraint = cbind(seq(1:10),1,0),
)
group_2 <- tpm(
 data = hw6test[attr(hw6test,"group") == 2,],
 type = "latent.trait",
 constraint = cbind(seq(1:10),1,0),
)
makeplot <- function(item) {
 x1 <- plot(group_1, type = "ICC", item = item)[,1]
 y1 <- plot(group_1, type = "ICC", item = item)[,2]
 x2 <- plot(group_2, type = "ICC", item = item)[,1]
 y2 <- plot(group_2, type = "ICC", item = item)[,2]

 png(file=paste("Excel-HW6-Item",item,".png",sep=""))
 plot(0,0,xlim=c(-
3,3),ylim=c(0,3),type="l",xlab=expression(theta),ylab=expression(p(theta)),main=paste("Differentia
l Item Functioning\nItem",item))
 lines(x1,y1,type="l",col="red")
 lines(x2,y2,type="l",col="blue")
 legend(x = -3, y = 3, lwd = 1, legend=c("Group 1","Group 2"),col=c("red","blue"))
 dev.off()
}
sapply(seq(1,10),makeplot)

Figure 64: Excel HW6 Output

Detection of Differential Item Functioning using Raju's method
with 2PL model and without item purification

Type of Raju's Z statistic: based on unsigned area

Engine 'ltm' for item parameter estimation

Raju's statistic:

 Stat. P-value
Item1 -1.1545 0.2483
Item2 -1.4217 0.1551
Item3 2.2838 0.0224 *
Item4 1.3486 0.1775
Item5 0.8661 0.3865
Item6 -0.0554 0.9558
Item7 -1.5553 0.1199
Item8 2.9140 0.0036 **
Item9 -0.9817 0.3263
Item10 0.6810 0.4959

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Detection thresholds: -1.96 and 1.96 (significance level: 0.05)

Items detected as DIF items:

 Item3
 Item8

Output was not captured!

Figure 65: Excel HW6 Output, Continued

Evaluation and Expansion
The scope of this guide is somewhat ambitious. We’ve covered no small amount of material and

touched on some valuable programming paradigms. However, it remains true that we haven’t set many

open-ended challenges. These can easily be found for the motivated learner by using the questions from

the end-of-chapter exercises in the Hambleton, Swaminathan, and Rogers text. This document is

probably best used as a springboard for further, independent exploration to the degree desired by the

reader.

The free and open nature of R aligns with the virtues of scholarly research. If you’ve found R to be

effective or interesting, consider trying to use it to replicate previous work you’ve done in other

statistical software packages. During these exercises, as well as any imported from the IRT textbooks

available, it can be valuable to have an overarching paradigm to approach what is, for all intents and

purposes, statistical programming. R provides an interface powerful and flexible enough to meet the

needs of the theoretical as well as the practical researcher.

This guide will conclude with a simple piece of expansion material. Much of statistics and programming

can be thought of as algorithmic work, and no small amount of pedagogy has been dedicated to helping

achieve mastery of this developmental framework. As your adventures in statistics and R continue,

consider the advice of George Pólya in “How to Solve It:”

1. Understand the problem

2. Devise a plan

3. Carry out the plan

4. Look back on your work

Table of Figures
Figure 1: Objectives.. 2

Figure 2: Prices of Software ... 3

Figure 3: VirtualBox Main Window ... 4

Figure 4: Naming the New Machine .. 4

Figure 5: Allocating RAM ... 5

Figure 6: Create a Virtual Hard Drive... 5

Figure 7: Virtual Disk Image Specification .. 5

Figure 8: Fixed Disk Size .. 6

Figure 9: Disk Size to 12GB .. 6

Figure 10: Confirm VM Creation ... 7

Figure 11: Mounting a CD-ROM Image .. 8

Figure 12: Shared Folders.. 8

Figure 13: First Login .. 9

Figure 14: The Guest Additions Auto-Run Dialog... 9

Figure 15: Root Command Prompt ..10

Figure 16: The geany IDE Initial View ...11

Figure 17: Geany IDE with R..12

Figure 18: Saving R Code ..13

Figure 19: Saving the Machine State ..13

Figure 20: Saved Machine State ..14

Figure 21: Selecting a Machine for Export ...14

Figure 22: Selecting Export Options ...15

Figure 23: Reviewing Export Metadata ...15

Figure 24: File Browser Main Window ..16

Figure 25: Root FileSystem ...16

Figure 26: Media Folder ...17

Figure 27: Bookmarked Directory ..17

Figure 28: Text file busy error ...20

Figure 29: Saving to virtual machine desktop ..21

Figure 30: Copying a file...21

Figure 31: Debian Desktop ...22

Figure 32: Starting geany IDE ..23

Figure 33: IDE Loaded ..23

Figure 34: Terminal View ...23

Figure 35: IDE with R Terminal ..24

Figure 36: Saving a Syntax File ..24

Figure 37: Code Highlighting after File Save ..25

Figure 38: Session 0 Code Output ..26

Figure 39: Adding some comments..26

Figure 40: An R help file ...27

Figure 41: Syntax output ..27

Figure 42: Beginning package installation ...29

Figure 43: Confirming personal directories, selecting a mirror ...29

Figure 44: R is case sensitive!..30

Figure 45: Successful package installation...30

Figure 46: Libraries loaded ...31

Figure 47: Summary command output ...31

Figure 48: Capturing output..32

Figure 49: Session 0 Output File ..32

Figure 50: Default syntax output appearance in windows notepad ...33

Figure 51: Fixing line endings ..33

Figure 52: Fixed line endings...34

Figure 53: ICCs for the Class10 3PL ..35

Figure 54: Exported image..35

Figure 55: Excel Homework 1 Output ...39

Figure 56: Excel HW2 Output ..41

Figure 57: Error: R version insufficient for library ...42

Figure 58: Software Upgrade Messages..43

Figure 59: R Upgraded ...44

Figure 60: Excel HW4 Output ..48

Figure 61: Excel HW6 Output ..51

Figure 62: difRaju documentation excerpt ..53

Figure 63: difRaju initial output ...53

Figure 64: Excel HW6 Output ..55

Figure 65: Excel HW6 Output, Continued..56

Table of Code
Code 1: Installing Kernel Headers for the i486 kernel ...10

Code 2: Installing VirtualBox Guest Additions ..10

Code 3: Install the R Base System, development files, and a text editor..10

Code 4: Adding User to the Shared Folders groups...10

Code 5: Restart the Machine ..11

Code 6: Starting R inside a Terminal...11

Code 7: Starting R in vanilla mode ...24

Code 8: Session 0 Syntax ..25

Code 9: Session 0 Syntax ..25

Code 10: R help file access ...26

Code 11: Session 0 Syntax ..27

Code 12: Relative folder location setup ..28

Code 13: Installing R add-ons via CRAN ..28

Code 14: Package installation, continued..30

Code 15: Loading packages...30

Code 16: Summary command ...31

Code 17: Saving textual output to a file ..32

Code 18: Downloading a file conveniently ..34

Code 19: Loading a CSV into an R dataframe ...34

Code 20: Loading the ltm library ...34

Code 21: Generating 3PL ICCs ...34

Code 22: Saving Class10 3PL ICC to a file ..35

Code 23: Excel HW1 Data Frame ...36

Code 24: Excel HW1 P-Indices ...37

Code 25: Excel HW1, continued ..37

Code 26: KR-20, KR-21 ...37

Code 27: Advanced Coding Hint ..38

Code 28: D-Index ..38

Code 29: D-Index Upper Group Selector ...38

Code 30: Excel Homework 1 Input ...38

Code 31: Session 1 Bonus Hint 1 ...39

Code 32: Session 1 Bonus Hint 2 ...39

Pθ=c+1-c1+e-1.7aθ-b Code 33: A Custom 3PL Function...40

Code 34: Generating ICCs...40

Code 35: Excel HW2 Input ..41

Code 36: Installing and Loading the Person Parameter Library ...42

Code 37: Adding a Package Repository to the Operating System ..43

Code 38: Upgrading Internal R Packages...44

Code 39: Installing the Person Parameter Library...44

Code 40: Creating the appropriate data objects...45

Code 41: Examining the workspace ...45

Code 42: Ability Estimation ..45

Code 43: Excel HW3 Input ..46

Code 44: Excel HW3 Output ...46

Code 45: Creating a dataframe for graphing..47

Code 46: Drawing ICCs...47

Code 47: New line drawing, modified legend ..48

Code 48: Excel HW4 Input ..48

Code 49: Making a TCC function..49

Code 50: Graphing a TCC..49

Code 51: Creating the Item Information Functions ...50

Code 52: Graphing some IICs ..50

Code 53: Making the Test Information Curve ..50

Code 54: Excel HW5 Input ..51

Code 55: Importing Data ..52

Code 56: Some data cleaning..52

Code 57: Install difR package ..53

Code 58: Calling the difRaju function ...53

Code 59: Replicating Plots ..54

Code 60: Excel HW6 Input ..54

