ltem Response Theory with R

A Quick-Start Introduction to Modeling, Simulation, and Best Practices

David Fikis
dfikisl@gsu.edu
November 2014

Table Contents

FOMEWOIT. ..ttt et et ettt e et et e et e et e et e e e s e et e et b e eea e eeaa e enaae 2
o 1=T 0= - 1 o] o 3
Y251 T 2= 01T =T 0 0= £ 3
1o1S | Y 4T o PP PPN 3
StEP L: INSEAll VIrUGIBOX .. eu i et e et e et e e e e e e e e e e e e e e e aaanas 3
Step 2: Acquire Debian’s Install Disk IMage.......c.oeviiiiiiii e 3
Step 3: Create a Debian Virtual Maching ..., 3
Verifying INSTallation........c. i e e e e e e et r e e 11
FEATUIES ANO NOLES ...ttt ettt e e et et e et e e e e e an e etn e eabeeanneeees 13
Y1 = T SE7 (o) o PN 13
Exporting @ Virtual Machinegcouiiniinii e e 14
Tl [T =] o T Yo I oo [0 [T R 15
USEr INTErface DELAIIS. ... ieuniiie ettt e et s e et e e e e e e e et e eaa e 17
Presentation and PraCtiCe e ittt et et e e eans 19
REVIEW O FOIMUIGE ... et e et e et e e et eeaeas 19

2T o = Lo o (o] 2 PP 20
SESSION 01 BASIC R TASKS ..ttt ettt et e e et e e e e e e e e eaans 22
SESSION 11 EXCEBIHW L. ..ottt e e e e et e e e e e e e e e e e e e e e ean e eeaaes 36
SESSION 2: EXCEIHW2.. oottt e e 40
SeSSION 31 EXCEIHW ..ottt e e e enans 42
SESSION 41 EXCEIHWA ...ttt e e e e eeaaes 47
SESSION 51 EXCEIHWS ... ettt et e e e 49
SESSION 61 EXCEIHWG. ...ttt e e e e eaaes 52
EValuation @and EXPanSiONc..iuiii i a e ans 57
LI] 1 Lo 5 =0T =T3P 58

1] o] (=30 i o o [T 60

Foreword

This guide is intended to offer the student of Item Response Theory some basic instruction and
operational knowledge sufficient to use the R statistical software package to complete introductory
exercises. Like any statistical endeavor, this small guide operates under a number of assumptions. The
validity of its operations and scope depend on the validity of said assumptions, and enumerating them
briefly helps the reader determine whether this guide matches the needs of the end-user. They are:

¢ Nosingle body of instruction can be both sound and complete
e Atheoreticalunderstanding of tools used improves their use
e Problem-solving perspectives aid in conceptualizing tasks

The pedagogical approach of the guide is based on the content matter. R, like most statistical software,
has its own interface and syntax; interacting with this syntax forms the vast majority of an R experience.
Programming “languages” are just that — languages. This guide assumes some basic knowledge of IRT
and approaches the exercise of using R as that of a second language. Second-language acquisition,
particularly academic languages, benefit from ordered approaches, because such languagesare often
proceduralin addition to declarative exercises (Chamot and O’Malley 1987, 232). The following broad
categoriesand objectives describe the path of activities to follow in this guide:

Figure 1: Objectives

— Preparation

* Review system requirements
¢ Install necessary components
o Verify installation

— Presentation

* Review relevant formulae
o |dentify best practices
¢ Conduct basic IRT tasks

— Practice

* Test created functions and expressions
¢ Develop a plan for simulation
e Conduct and report simulation

— Evaluation

* Replicate exercises from Hambleton, Swaminathan, and Rogers

— Expansion

« Identify external resources
* Consider sample exercises

Preparation

System Requirements

Before getting into the details of using R for IRT, R will first need to be installed on the computer to be
used for the process. R will run on machines that wouldn’t run SAS or SPSS. R also boasts a particular
advantage among comparable software, detailed below:

Figure 2: Prices of Software

SPSS SAS R
License Type 1-year l-year GPL-2
Price >$5,000 >S5,000 SO

Considering that most student licenses under which we can acquire SPSS or SAS often forbid using them

for publications, R stands out as a very advantageous choice in terms of price. This advantage, however,
is not without opportunity costs: as you will see, the R experience is profoundly different from the
typical statistical software package. These differences, once appreciated, add to the virtue of R in
academic settings. For instance, the open source nature of R allows for publication of new libraries and
inspection of existing ones. While the initial lack of a user interfaceis intimidating to those who are used
to command-line interfaces, the resulting programmability and portability of code is very convenient.

Installation

One of the most important but least-considered properties of a statistical software package during
learning time s portability. If you have to work on another computer, how long will it take? Are you able
to count on consistent performance in six months? In a year? Ris a command-line environment at its
heart, and within that command-line paradigm are a plethora of free, high-quality pieces of software.

Although it takes a bit more work up-front, creating a virtual machine for your R work allows you to have
a completely portable and self-contained environment. Much of the documentation for R is written
from the perspective of a Linux user, and if you’re not interested in reformatting your computer,
rebooting often, and other fun tasks, a virtual machine is how you can have your cake and eat it, too.
Cake isn’t cheap, though, and virtual machines do have some overhead. | would not recommend this on
sub-par laptops, but most desktop machines should be capable of handling the burden.

Step 1: Install VirtualBox

Headto https://www.virtualbox.org/ and visit the Downloads section. Download the “Virtualbox
platform package” for your operating system and install it like you would any application.

Step 2: Acquire Debian’s Install Disk Image

Now go to https://www.debian.org/and visit the Net Install sub-section of the Getting Debian Section.
Select the i386 architecture and wait for the .ISOfile to download.

Step 3: Create a Debian Virtual Machine

This is one of the more complicated parts of the guide, but the results will be worth it. A virtual
computer-within-a-computer will be createdtohouse all of our work in a portable and consistent way;
performance should be consistent over various operating systems, and the machine offers some nice
conveniences for workflow that will be discussed later. We will make some decisions about
configuration that will be briefly, but not fully, explained.

https://www.virtualbox.org/
https://www.debian.org/
https://www.debian.org/distrib/netinst

Create a New Virtual Machine

Begin by opening the VirtualBox program if you have not already. With different versions and operating
systems, there’s a chance that your screen may appear different, but the general preview of the main
windows is depicted below. Click on the “New” button near the top left-hand portion of the screen or
click on the “Machine” menu and select the “New” option there.

Figure 3: VirtualBox Main Window

) Oracle ¥M virtualBox Manager [—[O] =]
Fle Machine Help

{:} {‘\% g 4 (73 Detalls (@) Snapshots

Mew Settings Start Discard

'4.Q General . "'.,@‘ Preview

Name: Debian

Operating System: Debian (32 bit)

[x] system

Base Memary: 4096 ME q
Processars: 4 Debian
Boot Order: CDJDVD, Hard Disk.

Acceleration: YT-x[AMD-Y, Nested Paging, PAEJNX

(Display

video Memory: 126 MB
Remote Deskhop Server: Disabled
| Wideo Capture: Disabled

(& storage

Controller: IDE
IDE Secondary Master; [CD/DVD] Empty
Cantroller: SATA
SATA Port 0: Debian.vdi (Wormal, 20.00 GB)

{5 audio b

Hast Driver: Windows DirectSound
| Controller: ICH ACS7

[Netwark
| Adapter L1 Intel PROJ1000 MT Deskiop (NAT)
[& uss
Device Fikers: 00 active)
" [5 Shared folders
Shered Folders: 2
4@ Description

Mone.

A

The next steps involve proceeding through the new machine creation dialogs. The machine will need a
name, in this case the name “R Environment” is chosen. Then, for aesthetic purposes, we can set basic
properties of the machine: set the type to “Linux,” then find “Debian (32-bit)” in the version drop-down
menu. The result is shown below: note the red spiral, a Debiantrademark. Click “Next” when done.
Figure4: Naming the New Machine

) Create ¥irtual Machine EH
MName and operating system

Please choose a descriptive name for the new virtual machine and select the
type of operating system you intend to install on it, The name you choose will
be used throughout VirtualBox to identify this machine.

Mame: IR Envirunmend

Type: |Linux =l @
(@)

“ersion: |Dab\an (32 bit) ;I

Hide Description | < Back. | Mext = I Cancel |

Next, determine how much RAM the Virtual Machine will be told it has. More is never a bad thing,
unless you jeopardize your host system’s ability to function by allocating too much. For the purposes of

this guide, use a relatively safe amount of 4096MB, shown below. If this appears to be too much on your
system, indicated by the red part of the slider bar, drop back to 2048MB. These sizes are 4 and 2
gigabytes, respectably. The result is shown below. Click “Next” when done.

Figure 5: Allocating RAM

7 Create ¥irtual Machine

Memory size

Select the amount of memory (RAM) in megabytes ko be allocated to the virtual
machine,

The recommended memory size is 512 ME.

4 4096| 33 ME

4 MB 8192 ME

< Back | Hext > I Cancel |

Next, a virtal hard drive will be made for the machine. The dialog has three options. Select “Create a
virtual hard drive now” and click next:

Figure 6: Create a Virtual Hard Drive

7 Create ¥irtual Machine

Hard drive

I you wish you can add a virtual hard drive to the new machine, You can either
create & new hard drive file or seleck one From the lisk or from another location
using the Folder icon,

If you need & maore complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created,

The recommended size of the hard drive is 8.00 GB.
" Do not add a virtual hard drive
% Create a virtual hard drive now

" Use an existing virtual hard drive file

|Dab|an.vd\ (Mormal, 20,00 GE) ;I

< Back | Create I Cancel |

Select the first hard drive option, a “VDI (Virtual Disk Image)” and continue:
Figure 7: Virtual Disk Image Specification

§) Create Yirtual Hard Drive [7]
Hard drive file type

Please: choose the type of file that you would like to use For the new virtual hard drive, IF
you do not need to uss it with other virtualization software you can leave this setting
Unchanged.

& VDI (virtualBox Disk Image)

£ YMDK (Wirkual Machine Disk)

€ YH {Virtual Hard Disk)

¢ HDD (Parallels Hard Disk)

£ QED (QEMU enhanced disk)

£ QUOW [QEMU Copy-On-write)

bide Descrption | <k || mexe» | canvel

Select the “Fixed size” option. Although this will create more overhead on the host computer’s hard
drive at first, the performance benefits will help later:

Figure 8: Fixed Disk Size

§) Create Yirtual Hard Drive [7]
Storage on physical hard drive

Please choose whether the new virtual hard drive file should grow as it is used (dynamically
asllocated) or i it should be created at ibs maximum size (Ficed size),

dynamically allocated hard drive file wil only use space on your physical hard drive as
it fills up (up o & maximum fised size), although it wil not shrink again automatically when
space ont s freed.

A fined size hard drive file may baks longer to creats on some systems but is often Faster
ko use.

¢ Dynamically allocated

& Fized size

< Back | Mext > I Cancel |

Set the size of the virtual disk. For this guide, 12 gigabytes will provide plenty of overhead for any
additional software or file manipulation we might expect. Correcting for insufficient disk space is a
headache, so it’sgenerally a good idea to overestimate when it isn’t costly to do so. If you know that
your computer has two separate, physical hard drives, you may want to consider clicking on the folder
icon and relocating the virtual disk to a secondary hard drive for significant performance enhancement:

Figure 9: Disk Size to 12GB

§) Create Virtual Hard Drive [7]
File location and size

Flease bype the name of the new virtual hard drive fils inta the box below o click o the:
Folder icon to select & different Folder to create the file in.

R Environment: a

Select the size of the virkual hard drive in megabytes. This size is the limit on the amount of
File data that a virtual machine will be able to store on the hard drive.

<pack [crests | canes |

Once this process finishes — it may take a few minutes — your virtual machine is built! Of course, it has
no software and will do nothing useful just yet, but you should be able to see it in the main window of
the VirtualBox program now.

Figure 10: Confirm VM Creation

57 Oracle ¥M VirtualBox Manager |[=] 3
File Machine Help

-
"»:} {E} S N £73 Detals (&) Snapshats

Mew Settings Skart Discard

A Debian = General = preview
(0] @ Powercd oif
Hame: R Environment
e E— Operating System: Debian (32 bit} .
@ o- ' [2] system
Base Memory: 4098 ME H
Baoot Order: Floppy, CO{DWD, Hard Disk. R E“v"-o“me“t
| Acceleration: YT-xfAMD-Y, Nested Paging
[Display
Video Memary: 12 ME
Remate Deskiop Server: Disabled
| Video Capture: Disabled
Storage

Contraller: IDE
1DE Secondary Master: [CD/DVD] Empty
Contraller: SATA
| SATA Port 0: R Environment.wdi (Normal, 12,00 GB)

' B Audio

Host Driver: Windows DirectSound
| Controller: ICH ACST

EP Network

Adapter 1: Inkel PROJ1000 MT Desktop (MAT)
| (¥ usB

| Device Fiters: 0 (D active)

| [C] Shared folders

| None

& Description

Hone

Install Software

Now that our machine is built, we need to install the base Operating System as well as R. We will also
install a few utilities that will come in handy later on. Although some basic wizards exist, there’sa
chance that you might have accidentally already run your machine, so we’ll gothrough it manually.

Right-clickon the “R Environment” list-item and select the “Settings” option in the context menu. From
there, select the “Storage” option. Select the CD-rom looking icon under the “Controller: IDE” list-item,
then click on the CD and arrow icon on the right edge of the dialog window to select the “Choose a
Virtual CD/DVD disk file” option. Find the Debianinstallation .1SO file downloaded earlier in this guide,
and select it. The result is shown below.

Figure 11: Mounting a CD-ROM Image

¥ R Environment - Settings EFHE
E ceneral | Storage |
E Syskem
Storage Tree Attributes
Ell Displa
Py e Cantraller: IDE (DJDNVD Drive: IIDE Secondary Master vl (O]
Storage ;
[@ debian-7 [™ Live COJDVD
B sudio X
& @& controller: SATA Infarmation
TMetwark : a
: Type: I
: R Environment, vdi Pt i
£ serial Parts Size: Z77.00ME
p \EE Location: CiiUsersidfikis1\Downloadsidebi...

Attached to: -

[shared Folders

oK I Cancel | Help |

While we’rein the settings menu, let’s configure a Shared Folder. This will make moving files around
much easier between our Virtual Machine and our real computer. Select the “Shared Folder” item on
the left list, and click the little icon with a folder and green plus sign to add a shared folder. Select the
folder pathlike you would when selecting any directory: | usually gofor a sub-folder off of the Desktop
for convenience. Give it an easy to remember name. In the example, we’ll call it “HOST.” Leave the read
only option unchecked. Check the auto-mount option. At this time, you may also want to add a shared
folder for Dropbox if you are a Dropbox user. Although we could install Dropbox on the virtual machine,
it is more efficient to access thefiles via your real computer’s directories. Click “Ok” when done to close
the settings dialog entirely. The results are shown below.

Figure 12: Shared Folders

ﬁ- R Environment - Settings ﬂ E
= General | Shared Folders |
[system
Falders List
Ell Display

Mame IPath Auto-mount IAccess I Eﬁ
B storage = Machine Folders 7]
1}" audio ¢+ Dropbox CiiUsersidfikis1\Dropbox Yes Full
L HOST Cillsersidfikis1\Deskiopitemp ‘es Full =
[E Metwork
@ Setial Porks
& ss

Shared Falders

[1]

Cancel | Help |

We’re now readyto turn on the Virtual Machine. This will boot the machine through the operating
system installation, which may change over time. Generally speaking, the options can be left with all
their default values. Choose a hostname, account name, and password that are unique, but unused
elsewhere. Once the installation completes, you will be able to login. It will look not unlike the figure
below. More guidance on Operating System installation canbe found at http://www.debian.org/.

http://www.debian.org/

Figure 13: First Login

@ odAe0 &kt

The first task now is to prepare the machine to with some add-ons to make it run better. First, let’s
attach the Guest Additions CD-ROM by selecting the last option, “Install Guest Additions Image...” from
the Device menu. A pop-up dialog to confirm using Auto-Run will appear. Click cancel — we are not going
to do this the automatic way because of a bug in the existing setup. In the future, this bug might get
patched and this section of instructions may be obsolete. The dialog is pictured below.

Figure 14: The Guest Additions Auto-Run Dialog

.........

This medium contains software intended to be automatically
= started. Would you like to run it?

The software will run directly from the medum
“VBOXADDITIONS.4.3,12.93733". You should never run software that you don't
trust

f in doubt, press Cancel

WO/ QWD @ ojreran

From the Applications menu, select the Accessories option, then the Root Terminal application. You will
need to enter your password. From there, you will be in an administrator command prompt where we
can install all the software we will need. The result will look like the figure below.

Figure 15: Root Command Prompt

WOFY D oo

Within this command prompt, enter the following command (note that if you're using a different
architecture than what we chose earlier, you may have to specify a different package) :
Code 1: Installing Kernel Headers for the i486 kernel

apt-get install linux-headers-i486

Choose “Y” or “yes” for a prompt if it confirms installing options. Then wait a while. Some errors about
“DKMS” and “modules” and versions maydisplay. These are expected. Now we will run the Guest
Additions Setup from the “CD-ROM” we used earlier. This will take more than one line of code, and you
may have to confirm installation over existing versions.

Code 2: Installing VirtualBox Guest Additions

cd /media/cdrom
sh VBoxLinuxAdditions.run

While in this root prompt, let’s install the R components we will need to get right into things alongside a
handy text editor called geany. For this line, you will probably have to confirm the installation of
additional, required packages. That is okay. Enter the code below to get everything started:

Code 3: Install the R Base System, development files, and a text editor

apt-get install r-base r-base-dev geany
We also need to patchjust a couple things pertaining to shared folders, assuming a username of “user”:
Code 4: Adding User to the Shared Folders groups

usermod -a -G fuse user
usermod -a -G vboxsf user

When that’sdone, the safest thing to do now is to reboot the system to confirm that the bug is fixed:

Code 5: Restart the Machine

reboot

Verifying Installation

When the machine reboots and you log in, click the Applications menu. Under the “Programming” sub-
menu, select “geany” toopen our IDE (Integrated Development Environment.) Geany is one of countless
programs whose mission statement is to bundle together many tasks programmers (such as you are
about to be) need to work efficiently. We will be using the IDE approachto honor one of the best
practicesin our field: saving our syntax! The application will look like the figure below, but be warned
that future versions may have slightly different defaults and themes.

Figure 16: The geany IDE Initial View

02:45.22: This Is Geany 1.2,
02:25.22: New fle "untitlad” opened.

| starus

e:2/1 col 0 sel 0 INS TAB MOD mode Unix (LF) encodng:UTF-8 fletype: R scope: unknown

FEEFLFICEEER

We’re going to change a couple things about this initial view to better suit our purpose. First, nearthe
bottom-left hand screen is a “Terminal” tab. Click it. You should recognize what happens — we have
already been inside a terminal. Within this terminal, enter the following code:

Code 6: Starting Rinside a Terminal

R --vanilla

The “--vanilla” option tells R to open a fresh, plain instance and to not save any changes madeto the
workspace. This will help maintain consistency, but more advanced users may eventually find that the
vanilla option no longer satisfies their needs. If the command succeeds, you will see a new kind of
prompt along with some of the basic R startup information. It will look like the figure below.

Figure 17: Geany IDE with R

@R Environment [Running] - Oracle ¥M YirtualBox
Machine view Devices Help

Applications Places SatOct 18, 3:00 AM

*untitled - Geany
File Edit Search View Document Project Build Tools Help

R =! &l

Symbols | Documents | | untitled 3

4
g
=

No tags found !

Status

Compiler

ion()' on h

Scribble

e 'demo()
Terminal g ()
L Type 'q()'

line:1/1 col: O sel: 0 INS TAB MOD mode: Unix (LF) encoding: UTF-8

‘@ *untitled - Geany

filetype: R scope: unknown

BP0 @ @rgeal

If that worked, we can continue to implement some best practices. The next two steps relate to the text
document portion of our IDE. First, click on the Document menu. Then select the Set Filetype sub-menu.
Select the Programming Languages sub-menu. Finish by selecting the “R Source” option. This will help
add a bit of color to our code to make it easier on the eyes. Now we need to save our file. Just click the
File menu, then the “Save As” option like normal. Select the Home option on the left to save in your
home directory. Give the file whatever name you like — conventionally, these types of files end in the .R
extension. The resulting dialog window is pictured blow. Confirm saving when done and remember,
going forward, to select File -> Save frequently.

Figure 18: Saving R Code

[@R Environment [Running] - Oracle ¥M YirtualBox [O[]
Machine View Devices Help

Applications Places SatOct 18, 3:04 AM

[Save File
File Edit §

[~ B Name [SEmple,cme Al] W

Symbols | pg Save in folder: mu;e.— Create FnLdEr‘

No tags four a &
Places Name ~ | size Modified m
Q) Search Desktop Yesterday at 23:58
ecentl Ise. o) Documents esterday at
®Recently Used |] D Yesterday at 23:58
Desktop CJHosT 01:58
LI File System Music Yesterday at 23:58
() VBOXADDITIO... Pictures Yesterday at 23:58
Documents Public Yesterday at 23:58
[Music [E Templates Yesterday at 23:58 ||%
Pictures [E) Videos Yesterday at 23:58 | |
B viceos —
I £ Downloads =
saes [2 -]
Compiler I
Messages
Seribble u
Terminal -
[J Open file in a new tab
[Rename J [Cancel] [Save l =
line: 1/ 1

‘@ *untitled - Geany

=
Bl @ et »

Features and Notes
Saving a Session

VirtualBox offers a tool that makes it easy to stop, set aside, and resume work within your IDE. From the
Machine menu in VirtualBox, select the Close option. Choices will appear. Ifyou select “save the
machine state,” asshown below, your session will be saved not unlike if you were to hibernate your
computer. You will be able to resume working without having to restart applications.

Figure 19: Saving the Machine State

FEFCFITFIFOEE

Once the state is saved, the machine will boot up right where it was left off as if one had suspended it. In
the main VirtualBox window, the option to start the machine will be present alongside the option to
“discard” the saved state and treat the machine as if it had been unplugged and whatever suspended
information had been retained would then be cleared from the machine.

Figure 20: Saved Machine State

FieMachre help
QEP P
dE2S

A5 B

iane; # Enceonma
Crerstirg System: Geban (32 ER)

(2] System

Baen Pary: 4056 MD
Boot Crder: Flopg, COJTAD, Hard ik
Acceleration: ¥Tx[AME-Y Mectod Paging

R Emconent «d (Mo, 12.0068)
Ao

st Drvers - Windons DrectSound

Corsreler: 1CHACST

& Metwark

daptes - IntelFRO1000 M Desktop (NAT)

Exporting a Virtual Machine

One of the fundamental advantages of using a virtual machine for statistics work is the portability of the
environment. Suppose a workstation was getting upgraded. Under the usual operating conditions, this
would mean hours of re-installing and re-licensing statistical software packages. With a virtual machine
and R, all we need to do is export the virtual machine and import it into a reinstalled VirtualBox
program. This can work between computers as well. From the main VirtualBox window, click on the File
menu, then select the “Export Appliance” option. A dialog will open to allow you to select which
machine to export.

Figure 21: Selecting a Machine for Export

?‘ Export ¥irtual Appliance EHE
Virtual machines to export

Please select the virtual machines that should be added to the appliance. You can select
more than one, Please note that these machines have ko be turned off before they can be
exported,

o Diebian

dironment

Hide Descriptionl < Back | Mext = I Cancel |

Afterwards, confirmation of the location and format for the exported file will be displayed. The options
can be left at their defaults: using a .OVA extension, as the dialog details, keeps the exported file simple
to manage.

Figure 22: Selecting Export Options

?‘ Export Yirtual Appliance EHE
Storage settings

Please choose a filename to export the OVF/OVA Lo,

If vou use an ova extension, then all the files will be combined inta one Open Yirtualization
Format Archive.

If wou use an owfextension, several files will be written separately.

Other extensions are not allowed.

File: IC:'l,Users'l,dFikislﬁ,Documents'l,R Environment, oval E
Farmat: [OVF 1.0 =l

[wrike Manifest file

< Back | Mexk = I Cancel |

An additional window concerning metadata will appear. All values can be left at their defaults:
Figure 23: Reviewing Export Metadata

?‘ Export Yirtual Appliance EHE
Appliance settings

This is the descriptive information which will be added to the virtual appliance, You can
change it by double clicking on individual lines.

Description | Configuration -

Wirtual System 1

i? Marne R. Enwvironrnent
@ Product
& Product-URL
@ ‘endaor
& vendor-URL

@ ersion
[T LI

Restare Defaults | < Back | Expart I Cancel |

A progress bar will be displayed as the export procedure executes. It will take several minutes as the
virtual hard disk is compressed to save on file size. The resulting file can be saved on any medium as a
backup of the virtual machine. To restore, select the “Import Appliance” option from the file menu.

Finding Shared Folders
If the “Auto-Mount” option was enabled as earlier and the proper user group fixes were applied, then

shared folders can be found on the virtual machine inside the “/media” directory. To find these files,
from the desktop select the “Places” menu, then the “Computer” option to open the file browser.

Figure 24: File Browser Main Window

File Edit View Go Bookmarks Help

Computer —x

Q search

& Home
& Documents é <
& Download: .

omnioads CO/DVD Drive File System
& Music
8 Pictures
B Videos

) File System

EEFEEFLFIE T

Select the “File System” option on the left to view the root filesystem:

Figure 25: Root FileSystem

Mon Oct 20, 10:07 PM

i
File Edt View Go Bookmarks Help
Q search
— — — e -—
b boat dev ete hame
— — .
" +found f nnt pt
— - .
@ Trash = — — —
Natwork ; t un sbin selinux
T Browse Net — — —_— — -—
| \
nitrd img

FEEEFCFIFEEE

Then double-click on the “Media” file-folder icon to open the media folder. Inside, you will be able to

see the automatically attached shared folders leading to your host computer. In the example below, our
“Host” and “Dropbox” folders are visible.

Figure 26: Media Folder

L] Q, search

Wosdomd @ Emarl

This might not be convenient to do every time, so let’s create a “bookmark” to this location. After
opening the folder you would like to create alink to, click on the “Bookmark” menu, then select “Add
Bookmark.” The current directory will be added to the convenient list of clickable tabs on the left.

Figure 27: Bookmarked Directory

wning] - Oracle VM ¥irtualiox

Mon Oct 20, 10:13 PM

sf_HOST

Go Bookmarks Help

@ media =l-o Q search

2015 CFP SEPES Call for Proposals SQIP 2015
pel 15 San Diego.docx Conference Call
Final pdf

FEFEEEC IR

User Interface Details

Before closing out this section, there are a few interesting properties of the user interface to note. Some
readers may be used to using Control+S to save files and the Control+C, Control+V method of cut and
paste. In our machine as configured, the right control key is the “host” key. This key is used to send
commands to VirtualBox itself rather than to the machineit is emulating. For example, HOSTKEY+F will
make the virtual machine toggle between fullscreen modes. Remember to use the left control key for
copy/pasting inside VirtualBox.

Copying text to and from windows inside the Debian environment is extremely easy if your mouse has a
middle (scrolling) button. All you have to do is click and drag to select text from one location, left-click
once at the destination, and click the middle mouse button. This is called the primary buffer and is
incredibly convenient once you get the hang of it.

We will be going forward with the concept of constantly saving syntax in executable files. Possibilities
abound, however, so do not feel obligated to use this method forever. More advanced users may be
interested in learning about a concept called version control.?

Before continuing, take some time to play with the IDE a bit. Take risks and enter some commands into
the R terminal. Try changing the sizes of various parts of the window to suit your taste. Explore some of
the features by creating new documents and trying out the “Documents” tab next tothe “Symbols” tab
near the top-left part of the screen. Every programmer has their own tastesfor an IDE. There are cult
followings, jokes, and even intense newsgroup argumentson the subject! Don’t be afraid to experiment
and find your own visually appealing style before diving in further.

! For a greatoverview, see Hartl, M. (2013). Rubyon Railstutorial: Learn Web developments with Rails. Upper
SaddleRiver, NJ: Addison-Wesley. pp.27-34

Presentation and Practice
Review of Formulae

In Item Response Theory, normally-distributed latent traits often referred to as abilities influence the
probability of correctly responding to anitem according to the following 3-parameter formula.

Equation 1: 3-Parameter Item Response Model

1—-c¢

P(6) =c+ 1 + e-L7a(6-Db)

The equation represents the probability of any one dichotomous item being answered correctly, and the
graph appears as a logistic (or sigmoid) function with rangesasymptotic of c and 1. Details of the role of
each variable are better discussed in course texts, but in short: a is a scaled discrimination factor, b is a
difficulty parameter, and c is a guessing parameter. The 1.7 is sometimes written as D, and it is a scaling
factor meant to make the model more closely represent the cumulative distribution function. To reduce
the model to the 2-parameter model, fix ¢ at zero. To further reduce the 2-parametertothe 1-
parameter model, fix a at one.

Other equations will be used in this guide to fit models. The most basic is Q, the probability of one
dichotomous item being answered incorrectly:

Equation 2: Probability of Incorrect Response Q

Q) =1-P(0)
Assuming local independence, probabilities are cumulative. The probability of any one set of responses
is the product of all component scores. In plain language, if correct use P, but if false use Q, and find the
total product of these components. The likelihood function can be used to estimate 0 for a given set of
responses when the item parametersare known. Often, the logistic function is maximized: this is
sometimes called log-likelihood estimation. Although logic can be used, the formula can also be
expressed algebraically as below, assuming U is the response of a dichotomous item.

Equation 3: Likelihood Function

n
L(B) — 1_[PI:Ui Qi(l_Ui)
i=1

When estimating parameters and abilities at the same time, the calculations are more complicated:

Equation 4: Likelihood Function with Unknown Abilities

N n
L(uNle; a, b, C) = HHIJLI}LUQL(JI_”!])

i=1 j=1
This method of estimation would be indeterminate if ability levels were not fixed in some way: the
number of estimated parametersis equal to three times the number of items (each parameter for the
item) plus the number of respondents (abilities.) Usually, abilities are scaled to a standard normal
distribution to avoid indeterminacy, creating a two-stage estimation process. In the first stage, abilities
are estimated initially based on score transformations, and then item parametersare estimated based
on the said ability estimates. In the second stage, abilities are estimated using the item parameters
derived from the first stage. These steps are repeated until changesin estimatesare negligible. This

method is referredto as joint maximum likelihood estimation. The join maximum likelihood estimation
method has several disadvantages discussed in more detail in the literature alongside other alternatives
such as Bayesian estimation methods and the use of integration.?

Best Practices

Save Syntax: Stay in Syntax

Retaining and operating from a syntax file is a best practice whenever it is available, although basic data
exploration and learning exercises may not immediately benefit from the practice. Programssuch as
IRTPRO and SAS have their own proprietary file formats and specifications to save analyses, and Ris no
different. One advantage with R is that syntax is saved in plaintext documents requiring no special
formatting; these files are highly portable and can aid in adjusting or replicating work later.

In this guide, syntax will be prepared in a separate file that we referencein R: rather thandirectly
entering a series of commands, we will instead build a “script” that will be evaluated all at once. This will
more closely allow us to practice using R as we might find ourselves using it in the field. We will use the
source command in R, but there are multiple ways to execute pre-written R code, such as the RScript
utility: more advanced users interested in automating code may be interestedin that.

In practice, you may get an error when trying to save your R syntax to a shared folder reading something
like, “error renaming temporaryfile: Text file busy.” If this is the case, then the shared folder mechanism
is not functioning at optimal speed to keep up with the file edits, like below:

Figure 28: Text file busy error

Applications Places Tue Nov 11, 12:54 PM

File Edit Search View Document Project Build Tools Help
ERS-E8 N-JMER & M| Q|| 1% | B

Symbols | Documents [5&55|m70,20141111,0400Rfi

g Llibrary(ltm)

s library(R.utils)
10 #Assign a string to a variable and print the variable

11 #This will demonstrate the SOURCE command.

12 foo <

13 print(foo)

14 #assign an af Error able
15 bar <ib‘(i

16 print(bar et

160 it a Error saving file.

%g tgﬂ;ﬂeg:ﬂ Error renaming temporary file: Text file busy

20 me_TEXT < fi
21 captureQutput
22 close (MY_TEXT

D)

The file on disk may now be truncated!

A~

The follow e masked from 'p

Messages

Terminal

ption, inherits, isOpen, pa

Error saving file (Error renaming temporary file: Text file busy)

'@ *session0_20141111. [&]

The solution is to just re-save your files to the desktop folder of your virtual machine:

2 See Hambleton, Swaminathan, and Rogers, Chapter 3, for further discussion

Figure 29: Saving to virtual machine desktop

Applications Places Tue Nov 11, 12:55 PM

Save File

File Edit ¢ Name: [‘R J

[v~ B ~ (
= = saveinfolder: | < |Euser [iJDesktop Create Folder

Symbols | D¢

Places [Name v | size Modified ||
Q search B

& Recently Used

D)

user

(] File System
Documents
Music
Pictures
Videos
Downloads
E3sf HoST ™
Scribble =

~

Messages

Terminal |) Open file in a new tab

i

Rename Cancel Save
Line: 18/ 23 —

'@ *session0_20141111.

You can then copy-paste from the desktop to the shared folder using the Places menu at the very top of
the screen, much like you might do in your normal computing environment, to select the desktop and
then right click to copy the file:

Figure 30: Copying a file

Applications Places Tue Nov 11, 12:56 PM
Desktop
File Edit View Go Bookmarks Help
Bookmarks ¢ EfHome [ZepEreR Q search
EJsf_HOST
Computer

| [Open With gedit Text Editor

Home e
& Open With Geany
Documents 20141

Open With Other Application.
Downloads

[Music Cut

Videos Malke Link

(& File System Rename.

& Trash Copy to >
Network Move to >

B Browse Net. Move to Trash

Compress
Send To

Tags

Properties “session0-20141111_0400.R" selected (667 bytes)

‘@ session0.20141111.,, @ Desktop

R PrefersVectors

R is built on a framework that offers great speed and readability of code based on a vector approach. In
traditional program environments used in statistical analysis, we often make use of loops to iterate
through replications or values in arrays. In R, however, we can often reference these arraysdirectly to
take advantage of speed and flexibility. This is probably best explained with some illustrations. We will
explore this during our first R practice session.

Style of Content

The main material will be presented in a series of independent sessions suitable to following along with
the Exceland book-based work in the introductory item response theory course. By completing these
sessions, the first major portion of coursework can be completed in R with no other required software.

Session 0: Basic R Tasks
Objectives
In this session, we will:
e Confirm our IDE functions
o Briefly examine variables and functions
e Install and load an R add-on package
e Execute basic descriptive statistical operations
e Import some data
e C(Createagraph

Procedures

Let’sboot up our Virtual Machine and log into our linux desktop. It should look something like this:

Figure 31: Debian Desktop

Tue Nov 11, 3:44 AM

Then we open geany, our IDE, by selecting it from the Applications -> Programming menu:

Figure 32: Starting geany IDE

Applications Places Tue Nov 11, 3:46 AM
§ Accessories

) Games

B Graphics

@ Internet

%4 office

T g

) sound & Video

C} System Tools

@ uUniversal Access

Figure 33: IDE Loaded

Tue Nov 11, 3:46 AM

untitled - Geany =
File Edit Search View Document Project Bulld Tools Help

RN - ER 8 | M [1Q | 1% B
Symbols | Documents | untitled 3

1

No tags found

@ m D]

03:46:08: This is Geany 1.22

Status 03:46:09: New file "untitled” opened.

Compiler

Messages
2
This is Geany 1.22

Using the down arrow at the bottom left of the interface, select the Terminal option:

Figure 34: Terminal View

Tue Nov 11, 3:46 AM

untitled - Geany - o

File Edit Search View Document Project Build Tools Help

E = @ x N 1Q | 1% | B
Symbols | Documents | | untitled

1

No tags found

~

Messages

Scribble

Terminal

This is Geany 1.22

@ untitle:

Being an R instance by issuing the command to open a “vanilla” R interface: using a vanilla interface will
help us ensure that we develop code that is more likely to work from place-to-place.

Code 7: Starting R in vanilla mode
R --vanilla

Figure 35: IDE with R Terminal

Applications Places Tue Nov 11, 3:47 AM

untitled - Geany

File Edit Search View Document Project Build Tools Help

5 v B8 EX 32 | M || Q| o | B
—_—
Symbols | Documents | | untitled 3
No tags found 1 H
~
Messages |
Scribble: * demo *help()' for on-Line help,
. or interface to help.

Terminal |
This is Geany 1.22

'@ untitled - Geany [

Now we can immediately begin some best practices: let’s save the blank text file so that we can startto
keep track of our work. Generally speaking, there are many ways to name files. Personally, | find adding
the date and time to files aids in tracking versions when other options aren’t available. More advanced
users may wish to read about using a utility called git to keep track of code.

Below, we save the file to our “sf_HOST” folder we configured earlier. This will allow our syntax file to be
accessed and maintained on our main computer, outside of the virtual machine. This can be useful for
sharing and editing without having to boot up the machine; remember that this means the file will not
be included in exports of the virtual machine, though. R syntax generallyuses a .R extension, and using
that will help our IDE interpret and highlight our code.

Figure 36: Saving a Syntax File

Applications Places Tue Nov 11, 3:49 AM
Save File

File Edit § Name: session0_20141111_0400|R J

v B]
Save in folder: |) media | sF_HOST Create Folder [

Symbols | pf
No tags foul |Places = Name v | size Modified ||+
Q search
3 Recently Used
user
Desktop
() File System
Documents
Music
Pictures
Videos B
~ E Downloads =

Messages | LJ |

Scribble

Terminal | = Openfile inanew tab

line: 4/ 4

‘@ *untitled - Geany [0

Rename Cancel Save

Let’sget out first lines written. In R syntax, the hash tag (#) is used to markcomments. Because we
might be sharing this file, or we might simply forget what we were doing, some of the best things to
include atthe top of the file are a name, a last updated date, and a brief description of what the syntax
does. For example, in our session O file, we could begin with:

Code 8: Session 0 Syntax

#R IRT Tutorial Session ©
#last updated 11/11/2014
#Purpose: This syntax will complete the basic introductory tasks

As you type, you may notice that having saved the file with a .R extension enables syntax coloring. That’s
normal and one of the handy featuresof arobust IDE. There are many features that more advanced
users may enjoy exploring.

For now, let’s enter our first evaluable lines of code. R operates with named, case sensitive variables and
function calls (that also, technically, are variables.) Although variable typing is a complex topic, let’s just
dive rightin with our first variable assignment and function calls:

Code 9: Session 0 Syntax

foo <- “hello world”

print (foo)
Before doing anything else, save your progress. Now is the time to build this good habit. In the first line,
our variable name is on the left-hand side of a “<-“ operator, which can be thought of as an arrow. On
the right-hand side, the quote-offset “hello world” acts as a string of characters. Thisstring is then
directed into the foo variable. Variable assignment can become very complex. The second line calls the
“print” function: know functions by their use of parentheses. Inside parentheses, we are able to specify
function parameters. Here, we just tell “print” what to print —the foo variable.
Figure 37: Code Highlighting after File Save

Applications Places Tue Nov 11, 3;55 AM

session0_20141111_0400.R - /media/sf_HOST - Geany
File Edit Search View Document Project Build Tools Help
58« 2 % & M| 71Q || SN
f

session0_20141111_0400.R 3

#R IRT Tutorial Session O [
#Last updated 11/11/2014
#Purpose: This syntax will complete the basic intorductory tasks

Symbols | Documents

No tags found

foo =<-
rrint(fun)

ouswN e

Messages| |

Scribble d r som s, ‘help on-line help, or
. ? $.

erface to help.
Terminal

line: 6/ 6 col: 0 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-& filetype: R scope: unknown

'@ session0.20141111_...

Let’srun our code. We’'ll do that by clicking on the terminal window. Type “foo” to see what the “foo”
variable currentlyis set to: you should see that it has no value. Then, call the “source” function. This
source function will be how we call up our typed syntax. Inside the source function, we need to specify
the file. We know the file name and location based on the title bar of our IDE. Inthe case of the
example, it is “/media/sf_HOST/session0_20141111_0400.R” and, when entered, will evaluate. R has
tab completion: you may want to try pressing tab while typing the file name to see it in action. After we

call our source function, we’ll see the results — the print command printing the foo variable. Let’s
conclude this batch of code by entering “foo” againin the terminal: as we can see, we have made
changes to the R workspace with our syntax.

Figure 38: Session 0 Code Output

Applications Places Tue Nov 11, 3:56 AM

session0-20141111.0400.R - /media/sf-HOST - Geany
File Edit Search View Document Project Build Tools Help
-8~ ERS & M| Q|| e B
f

Symbels | Documents | session0-20141111_0400.R

#R IRT Tutorial S.
#last updated 11/11/2014
#Purpose: This syntax will complete the basic intorductory tasks

ion ©

No tags found

oUEwWNE

print (foo)

' to quit R.

Messages [l

Scribble [

line:6/6 coliO sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown
@ session0_20141111_

Let’sadd a few more comments to explain what’s happening. In complex, multi-step syntax such as
simulations, it isimportant to document the code both for one’s own memory and for sharing:

Figure 39: Adding some comments

Applications Places Tue Nov 11, 3;57 AM

session0_20141111_0400.R - /media/sf_HOST - Geany

File Edit Search View Document Project Buld Tools Help
5 v 8 v [X 3| M | Q|| % | B

Symbols | Documents [ession0_20141111_0400R 3

No tags found 1 #R IRT Tutorial Session 0
0 tags foun| 2 #lLast updated 11/11/2014
3 #Purpose: This syntax will complete the basic intorductory tasks
a4 #
S #Assign a string to a variable and print the variable
6 #This will demenstrate the SOURCE command.
7 .
8 print(foo)
9
>
= ()' to quit R. B
Messages
"foo! not found
Scribble ession0_20141111_0400.R")

Terminal |4

line9/9 colbi0 seli0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown
'@ session0_20141111_...

This is a good point to highlight a critical paradigm in R: within the R environment, nearly everything is
conceived as a vector. When we view our “foo” variable, a “[1]” is visible. This is R telling us that foo is a
n array with a length of 1 whose content happens to be “hello world.” We can learn more about this at
the same time as we can review one of the most important commands in R. Within the terminal, issue
the help command by looking up the “c” function as follows:

Code 10: R help file access

’C

Figure40: An R help file

Applications Places Tue Nov 11, 4:34 AM

session0-20141111_0400.R - /media/sf_HOST - Geany
File Edit Search View Document Project Build Tools Help
=

& M| || Q| e | B

%

Symbols | Documents [5E55|un0,20141111,0400 R 3

No tags found 1 #R IFT Tutorial Session O
9 2 #Last updated 11/11/2014
3 #purpose: This syntax will complete the basic intorductory tasks
4 #
5 #Assign a string to a variable and print the variable
6 #This will demonstrate the SOURCE command.
7 00 <-
8 print(foo)
9
I >
A c pa R Documentation

Messages

Scribble

Terminal

line: 9/ 9 col:0 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

'@ session0_20141111_

You can use the up and down arrowsto move around in the help file, and you can click and drag the
divider to resize the terminal window. To exit the help file and return to the R terminal, just press the
“q"” key to “quit” the help file view. In the help file for the “c” function, we learnthat it pastes all its
argumentstogether: this function is one of the most convenient ways to enter arrays of information.

Let’sedit our syntax a little to see what this means and looks like. Add the following lines:

Code 11: Session 0 Syntax

#Assign an array of strings to a variable and print the variable
#Then, examine the lengths of two variables

bar <- c(“hello”,””world”)

print(bar)

print (length(foo))

print (length(bar))

In the R terminal, you can press the left control key and L to “clear” the screen. You can also press the
up arrow to scroll throughthe command history. Try using this to issue the “source” command again
and observe the output:

Figure41: Syntax output

Applications Places Tue Nov 11, 4:47 AM

session0-.20141111.0400.R - /media/sf-HOST - Geany
File Edit Search View Document Project Build Tools Help

v B v

X

& M Q|| fle | B

Symbols | Documents [<ession0_20141111_0400 R 3
1 #R IRT Tutorial sion 0
#Last updated 11/11/2014
#Purpose: This syntax will complete the basic intorductory tasks
#

No tags found

#nssign a string to a variable and print the variable
#This will demonstrate the SOURCE command.

00 <

print(foo)

#Assign an array of strings to a variable and print the variable
10 bar < cf)

11 print(bar)

12 print(length(foo))

13 print(length(bar))

A~

Messages

Scribble

Terminal

line: 13/14 col: 0 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

@ session0_20141111_..

We can see that the second variable, entered as a vector, has alength of two. We can also see that the
length command’s output itself is a vector with a length of one. Variables in R are most like the columns
of aspreadsheet. If we cluster a number of these columns together, we can use a structurein R known
as a data frame. A data frame is extremely useful and will be how we convey most information to and
from R for IRT tasks. You can issue the “?data.frame” commandto learn more from R’sinternal help
files, but these discuss the topic in more depth that practical knowledge may require. We will discuss
data frames more in a little while.

Before that, however, let’simplement another set of best practices. While typing the “source” function
in R, you may have noticed that the path to our file is typed out in full. In more advanced syntax, this can
sometimes create a problem. What if, for example, someone is running a different R environment where
the path totheir shared folder is different? We can solve this problem before it starts by taking
advantage of variables and functions to implement a best programming practice. Add the following line
of code near the top of our syntax, just below the first batch of comments:
Code 12: Relative folder location setup

#Save our preferred path location to a variable

MY_PATH <- “/media/sf_HOST/”
To go more deeply into R and use if efficiently, we will need to install some add-on packages.R hasa
network of archives and packagesthat we can take advantage of called CRAN (Comprehensive R Archive
Network.) There are indexes of packages, some 6000+ currently, sorted by both name and publication
date. If you need something fancy, browsing this list is one of the ways to find it. Another is to use “Task
Views” which contain digests and some annotations on packages. For example, the psychometrics task
view contains a section specifically discussing item response theory packages.3 Using that information
alongside some of the knowledge we already know, let’sinstall a few packages. Issue the following code
inside the R terminal:
Code 13: Installing R add-ons via CRAN

install.packages(c(“R.Utils”,”1tm”))

You might recognize the “c” function: as you might guess, we're using it to install two packagesat once.
If this is the first time we’ve added packages, we might be prompted touse a personal library and to
select a mirror. Using a personal library is fine, and for mirror selection pick whatever’sgeographically
closest toyou.

3 http://cran.r-project.org/web /views/Psychometrics.html

http://cran.r-project.org/web/views/Psychometrics.html

Figure42: Beginning package installation

Places Tue Nov 11, 11:26 AM

session0-20141111_0400.R - /media/sf_HOST - Geany
File Edit Search View Document Project Build Tools Help
iy B ER & M 11Q || % | B
[Symbuts Documents. [sessmno,zouuu,uwore1;
1 #R IRT Tutorial S

%

No tags found on 0

2 #Last updated 2014

2 #purpose: This syntax will complete the basic intorductory tas
2 #

5 e our preferred path location to a variable

6 ATH

7 ign a mmq to a variable and prant « the variable

& #‘rhh will demonstrate the SOURCE comman:

9 foo = =
10 |)|1|\t(fnﬂ)

11 #Assign an array of am?q, to a variable and print the variable
12 -)

12 print(bar)

14 print(length(foo))
15 print(Length(bar))
16

~

Messages

Scribble

Terminal

line:6/16 col:28 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

‘w

0141111_

Itis often necessary to use personal libraries because of the security settings within a linux environment.
More advanced users who want to know more may wish to research the “root” account and the “sudo”
linux command for more information on these subtleties. Confirm creating a directory, if necessary, and
select an appropriate mirror:

Figure43: Confirming personal directories, selecting a mirror

Places Tue Nov 11, 11:29 AM

CRAN mirro Document Project Build Tools Help
CRAN mirror 20 g (P (n

Fraiwan (Taipen) N Rl C Q s | B
[Thailand — — =
[Turkey ion0_20141111_0400.R
UK (Bristol) N

#R IRT Tutorial S
ﬁi:fﬁ,ﬁbﬂge' #Last updated 11/11/2014
UK (London) #pPurpose: This syntax will complete the basic intorductory tasks

#
ea oy ¥save our preferred path location to a variable
USA (CA 2) i <
Ush (1) ign a string to a variable and print the variable
Usa (IN) et T demogetrass he Coumcn command.
UsA (KS) fog = ton] E
USA (MD) tifoo)
Usa (M) g an array of strings to a variable and print the variable
USA (MO))
o (OH) print(bar)
UsA (OR) print(length(foo))
USA (PA 1) print(Length(bar))
Ush (PA 2 ‘
RUSATTTN)
USA TTX 1) |
USA (WA 1)
USA (WA 2)
[Venezuela
[Vietnam =

oK Cancel
to insta
Terminal

line: 6 /16 col: 28 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

Surprise! If you followed the instructions to the letter, you will have just encountered anerror:

Figure44:R is case sensitive!

Applications Places Tue Nov 11, 11:31 AM

EEERLUURFAREE Cick to view your appointments and tasks

File Edit Search View Document Project Build Tools Help
iy B % & M 11Q || % | B

Symbols | Documents [5E55I0h0,2014111170400R x

3

#R IRT Tutorial S
#Last updated 11/11/201

1 on 0 E
No tags found 5 ’
3 #Purpose: This syntax will complete the basic intorductory tasks
4 #
5 #save our preferred path location to a variable
6 ATH <-
7 gn a string to a variable and print the varizble
8
9
10

will demonstrate the SOURCE command.

print(foo)

#Assign an array of strings to a variable and print the variable
12 bar < B)

12 print(bar)

14 print(length(foo))

15 print(length(bar))

~

Messages
ITh
Scribble

Terminal

line:6/16 col:28 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

This encounter was purposefully engineered to give you your first, relatively harmless encounter with
just how picky R syntax can be when it comes to capitalization. Issue the command again differently:

Code 14: Package installation, continued

install.packages(c(“R.utils”,”1tm”))

This time, the process should complete without any errors. We now have the packagesinstalled:

Figure 45: Successful package installation

Applications Places Tue Nov 11, 11:33 AM

session0-20141111_0400.R - /media/sf-HOST - Geany
File Edit Search View Document Project Build Tools Help
ER =5 X LRl 1Q || e | B

session0-20141111_0400.R
#R IRT Tutorial S

s on 0 B
#Last updated 11/11/2014
#pPurpose: This syntax will complete the basic intorductory tasks
#

3

f

Symbeols | Documents

No tags found

#Save our preferred path location to a variable
ATH <-

gn a string to a variable and print the varisble
will demonstrate the SOURCE command.

00 =
print(foo)

11 #Assign an array of strings to a variable and print the variable
12 bar = cf .)

13 print(bar)

14 print(Length(foo)
15 print(length(bar))

be loaded

line: 6/ 16 col: 28 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

n0_20141111_ [
In order to use these packages, we need to load them into the R environment. Execute the following

code in the R terminal, but also be sure to add it to our syntax, just below declaring “MY_PATH.” Now is
also a good time to remember to save your syntax after editing it.

Code 15: Loading packages

#load libraries
library(1tm)
library(R.utils)

Figure46: Libraries loaded

Applications Places Tue Nov 11, 11:37 AM

session0-20141111_0400.R - /media/sf_HOST - Geany

File Edit Search View Document Project Build Tools Help
iy B % & M 11Q || % | B

3

Symbols | Documents [5E55I0h0,2014111170400R x

#R IRT Tutorial Session O

#Last updated 11/11/2014

#Purpose: This syntax will complete the basic intorductory tasks
#

1

z

El

4
5 #save our preferred path location to a variable
6 My_PATH <-

7 #Load libraries

& Llibrary(ltm)

9 Library(r.utils)

10 #Assign a string to a variable and print the variable
11 #This will demonstrate the SOURCE command.

1z foo =

12 print(foo)

14 #Assign an array of strings to a variable and print the variable
15 bar < ¢l .)
16 print(bar)
17 print(length(foo))]
I m B
o g
Messages
scribble ui

Terminal

line:9/19 col:16 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

'@ session0_20141111_

Let’sreturn to the subject of data frames before continuing. A data frame has a name and sub-columns
combined with the scalar “S” character, such as AttendanceSName. Let’s examine the “summary”
command as well as briefly touch on R’s powerful vector-based notation to do some rudimentary
comparisons. When we loaded the Itm library, a special data frame, Abortion, as added. This data frame
is provided with the Itm package to allow for replicationand testing of code. Such publication of
datasetsis a common occurrence in the R community: support forums often use these published sets of
datato generate example code. Let’stake a look at it by entering some code into the R terminal
window:

Code 16: Summary command

summary (Abortion)

Figure47: Summary command output

Applications Places Tue Nov 11, 11:51 AM

session0-20141111_0400.R - /media/sf_HOST - Geany

File Edit Search View Document Project Build Tools Help
v B X & M 11Q || % | B

3

Symbols | Documents [5E55I0h0,2014111170400R x

3 #Purpose: This syntax will complete the basic intorductory tasks (~]
4 #
5 #save our preferred path location to a variable
6 My_PATH <
7 #Load libraries
& Library(ltm)
o library(R.utils)
10 #Assign a string to a variable and print the variable
11 #This will demonstratle the SOURCE command.
12 foo =-
13 print(foo)
14 #0ssign an array of strings to a variable and print the variable
15 bar = cf .
16 print(bar)
17 print(Length(foo))
18 print(length(bar))
19
I [B
~
Messages [
Scribble

El
Terminal [

line:11/19 col:21 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

'@ session0_20141111_

Let’ssee how this can be more useful by introducing the concept of saving R output to files. Right now
we know how to import pre-written code, but the output is stuck inside an R terminal window. How do
we get that information into files we can share and archive? Let’stry adding the following line to our
code just after we declare MY_PATH:

Code 17: Saving textual output to a file

#Output textual information to a file

sink(file = paste(MY_PATH,"session@_outputl.txt",sep=""),
append = FALSE, split = FALSE)

print (summary (Abortion))

print (descript(Abortion))

sink()

Figure48: Capturing output

Applications Places Tue Nov 11, 6:10 PM

session0_20141111_0400.R - /home/user/Desktop - Geany
File Edit Search View Document Project Build Tools Help
=

B M| 1Q | 1% | B

b4

Symbols | Documents [5555|nn0,20141111,0400‘R X

10 #Assign a string to a variable and print the variable
11 #This will demonstrate the SOURCE command.

12 foo <

13 print(foo)

14 #Assign an array of strings to a variable and print the variable
15 bar < cf)
16 print(bar)

17 print(length(foo))

18 print(length(bar))

19 #output textual information to a file

20 sink(file = paste(MY_PATH, ,sep=""),
21 append = FALSE, split = FALSE)

22 print(summary (Abortion))

23 print(descript(Abortion))

24 sink()

25

>

A
Messages
Scribble |4

Terminal

line: 23/25 col:0 se:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

'@ session0_20141111_

This code also shows an important side note: R does not always mind if code stretches over multiple
lines. The “sink” function allows output to be sunk to a different channel thanthe default output, and in
this instance we instruct it to be saved to a file. The “print” command is necessary around our code to
make sure it is properly displayed and rerouted. The final “sink” command closes the connection to the
file. We can open the output file in our IDE to see what it looks like, and switch the left sidebar from the
“Symbols” to the “Documents” view to be more useful to us:

Figure 49: Session 0 Output File

Applications Places Tue Nov 11, 6:15 PM
session0_outputl.txt - /media/sf-HOST - Geany

File Edit Search View Document Project Build Tools Help

58« & X & | M | Q|| % | B
Symbols = Documents | | session0-20141111_0400.R 3 | session0_outputl.txt 3
< B3 ~/Desktop 1 Item 1 Item 2
400.R 2 mMin. 10.000 Mmin. 10.0000
L sessi.. 400, 3 1st Qu.:0.000 1st Qu.:0.0000 A
~ [/media/sf HOST a Median :0.000 Median :1.0000 1
B 5 Mean 10.438 Mean 10.5937 an an
6 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
7 Max . :1.000 Max . :1.0000 Max . :1.0000 Max . :1.0000
8
9 Descriptive statistics for the 'Abortion' data-set
10
11 sample:
12 4 items and 379 sample units; O missing values
13
14 Proportions for each level of response:
15 o

16 Item 1 0.5620 0.4380 -0.2493

[>

~

Messages

Scribble 8

Terminal

line: 1/ 54 col: 0 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: None scope: unknown

'@ session0_outputl.txt ...

There is an opportunity for further refinement here. If this file were to be opened in Windows, the
default application would be notepad, and a peculiar Windows-only standard would result in it looking
like this:

Figure 50: Default syntax output appearance in windows notepad

u sessionD_outputl.txt - Notepad !li[B

File Edit Format Wiew Help

L Item 1 Item 2 Item 3 Item 4 mMin. H{=
ach's alpha: valueall Items 0.8707ExcTuding Item 1 C
| H 4

If you want, this is an easy issue to fix inside our IDE. Inthe Document menu, select the “Set Line
Endings” sub-menu, then the “Convert and Set to CR/LF (Win)” and save the document.

Figure 51: Fixing line endings

Applications Places Tue Nov 11, 10:58 PM

sessionO-outputl.txt - /media/sf-HOST - Geany

File Edit Search View | Project Build Tools Help
B =Y [Line Wrapping {3 @ (»‘Q (1] & E"
— [Line Breaking —

Symbols | Documents || se 5 oo session0_outputl.txt X

- Item 2
v B3 ~/Deskiop Indent Type > 0. 0000
R | 3 u. 10,0000
< B /mediajsf_HOST ¢ Indent Widt 5n :1.0000
< :0.5937
— € [JRead Only Qu.:1.0000
:1.0000

{ D Write Unicode BOM
| 5 for the 'Abortion' data-set
1 SetFiletype >

11

1z SetEncoding > le units; 0 missing values
1
1j =
1§ ® Convert and Set to LF (Unix)

16 Strip Trailing Spaces
a Replace Tabs by Spaces O Convert and Set to CR (Mac) B
Replace Spaces by Tabs

Fold All

Unfold ALl
Remove Markers
Terminal
Remove Error Indicators

line: 8/ 54 col: 0 sel: 0 INS TAB mode: Unix (LF) encoding: UTF-& filetype: None scope: unknown

'@ session0_outputl.txt

Figure 52: Fixed line endings

,. sessionD_outputl.txt - Notepad !IE[B
File Edit Format Wiew Help
| Item 1 Item 2 Item 3 Item 4 -
mMin. 10,000 mMin. 10,0000 M. 10, 0000 M. 10, 0000
1=t Qu. 0,000 1=t Qu. 10,0000 1=t Qu. 0. 0000 1=t Qu. 0. 0000
Median :0.000 Median :1.0000 Median :1.0000 Median :1.0000
Mean 10,438 Mean 1005937 Mean 10,6359 Mean 10,6174
ard qu.:1.000 srd Qu. :1.0000 srd Qu. :1.0000 ard Qu. :1.0000
Max. 1,000 Max. (1.0000 Max. (1. 0000 Max. (1. 0000

Descriptive statistics for the 'abortion' data-set

Sample:
4 Gtems and 379 sample units; 0 missing wvalues

Proportions for each level of response:
0 1 Tlogit

Item 1 0.53620 0.4380 -0.24053

Item 2 0.4083 0.5937 (,3751

Item 3 0.3641 0.635% 0,5575

Item 4 0.3826 0.6174 (0.47846

Freguencies of total scores:
3 4 -

| 2
We're all set for basic R work except for two more important features. Let’sstart by looking at a
convenient wayto get externaldata into R. Suppose we have an online source data, such as:
http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv. We can easily bring that into R.

Code 18: Downloading a file conveniently

download.file(“http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv”, destfile="Class10.csv”)

Once the file is on our system, we canread it into an R data frame. There are many different ways to do
this depending on the filetype: R can read from all kinds of things, including .CSV and .XLSX files. Check
out the “read.table” function’s help files for more advanced information. For now, we’ll load the Class10
data. There’san interesting option we’ll be setting: because the Class10.csv file’s first column is the ID of
the participant, we can use that ID toset the row name. Doing so will make it more convenient later.

Code 19: Loading a CSVinto an R dataframe
Class10 <- read.csv(“Classl@.csv”, row.names = 1)

Setting “row.names” to 1 allows for using the first column of the file to be used to name the rows.
That’ll keep later graphs from charting up the ID field. Speaking of charts, let’slook at that now. R can
make some really crisp-looking graphics, but if you can’t get them into your report or manuscript, what
use arethey? Let’stake alook, first, at how to get a graph, then let’ssave it to a file that canbe taken
into other programs. Before we do this, make sure to load up the “Itm” library if you haven’t already:

Code 20: Loading the Itm library

library(1ltm)

Now let’s jump right into this from an IRT perspective. We'll talk more about these functions later, but
let’s plot the item characteristic curves for the Class 10 data using the Birnbaum 3-parameter model
estimated with likelihood-maximization and standardization of ability parameters:

Code 21: Generating 3PL ICCs

plot(tpm(Classl@, type="1latent.trait"), type ="ICC", zrange=c(-3,3), legend = TRUE)

This is a nested function: without the “plot” function, the first argumentis a call to the “tpm” function.
Within the tpm function we reference the Class10 object and set an option, type, to “latent.trait.” You

http://coeweb.gsu.edu/coshima/EPRS8410/Class10.csv

can always check the help pages for a function to reference the arguments and their uses: in this case,
we choose “latent.trait” inorder to get a proper 3PL as we expect it. The plot function has several
options, too. We can get different types of plots from an IRT model function, and we select the ICC. We
set the range from the traditional -3 to 3, and for legibility we let the plot know we want to see a legend.

Figure 53:ICCs for the Class10 3PL

Applications Places

R Graphics: Device 2 (ACTIVE)

ltem Characteristic Curves 71Q | 7 B

08
I

g=c(-3,3), legend = TRUE)

, destfile=) H
&

Probability

scope: unknown

To save it to a file, we use a set of functions not unlike the “sink” function we used earlier to save text
output. Many options are available, but we’ll use the “png” function for flexibility.
Code 22: Saving Class10 3PL ICC to a file

png(file="Class10ICC.png”)
plot(tpm(Classl®, type="1latent.trait"), type ="ICC", zrange=c(-3,3), legend = TRUE)
dev.off()

Remember to make use of your virtual shared folders to conveniently position files.

Figure 54: Exported image

Item Characteristic Curves

4 — temt
ltemz
ltem3

— ltem4

@ ltems

— Items
ltem?.
ltemg

— ltemo

s 7 ltern10

Probability

Abllity

That was a lot of information. Remember, you can always use the “?” tool inside R to referencea
function, and the online communities supporting R are incredibly diverse and in-depth.*

4 See http://stats.stackexchange.com/questions/tagged/r fora great example of the active R support community

http://stats.stackexchange.com/questions/tagged/r

Session 1: Excel HW1
Source
Classical Item Analysis

For those who would really like to understand CTT, the best way is to actually
calculate indices yourself. Calculate p-index, D-index, point biserial, coefficient
alpha, KR20, and KR21 for data shown in Table 1 in Harris’ article
(http://coeweb.gsu.edu/coshima/EPRS8410/1p2p3p.pdf) using Excel. You also
get to see how indices based on CTT and those based on IRT are different or

similar.
TABLE 1
Item Responses for 10 Examinees to 14 Items
Total raw
Examinee 1 2 3 4 5 6 7 8 9 10 171 12 13 14 score
AA 101001101710 0 1T 1 0 7
BB 11M11T111017 % 0 0 1 0 10
cC 100000101710 1 1 0 0 5
DD 1010000000 0 71 0 0 3
EE 1111111111 1 1 1 1 14
FF 19010111110 0 1 0 1 9
GG 1100171710170 0 0 0 O 6
HH 1000071701 0 0 0 0 O 4
1l 10000171001 0 0 0 0 1 4
1) 111010011 0 0 1 0 0 7
Objectives

In Excel HW1, we must:

e Construct a response data frame

e Evaluatethe p-indices

e Evaluatethe D-indices

e (Calculate point-biserial correlations
e Evaluate coefficient alpha

e Find the KR20and KR21 statistics

Procedures
First, because the source datais within a PDF, let’s create the dataframe manually:

Code 23: Excel HW1 Data Frame

HW1Test <- data.frame(

Iteml = c(1,1,1,1,1,1,1,1,1,1),
Item2 = c(0,1,0,0,1,0,1,0,0,1),
Item3 = ¢(1,1,0,1,1,1,0,0,0,1),
Item4 = ¢(0,1,0,0,1,0,0,0,0,0),
Items = ¢(0,1,0,0,1,1,1,0,0,1),
Itemé = ¢(1,1,0,0,1,1,1,1,1,0),
Item7 = ¢(1,1,1,0,1,1,1,1,0,0),
Item8 = c(0,0,0,0,1,1,0,0,0,1),
Item9 = c(1,1,1,0,1,1,1,1,1,1),
Itemlo = c(0,1,0,0,1,0,0,0,0,0),
Itemll = c(0,0,1,0,1,0,0,0,0,0),
Iteml2 = c(1,0,1,1,1,1,0,0,0,1),
Iteml3 = ¢(1,1,0,0,1,0,0,0,0,0),
Iteml4=c(0,0,0,0,1,1,0,0,1,0))

Fortunately, because this is dichotomous data, the p-values are simply the means of each item. We can
make use of R’svast libraries to make these next steps much easier. Using the knowledge you gained

http://coeweb.gsu.edu/coshima/EPRS8410/1p2p3p.pdf

earlier, install the “CTT” package. We will load it and use some of its functions, and we will make sure
the output is sent to a text file we could, for example, submit for credit. Setting the “width” to 1000 via
the “options” function makes it so that wide lists, such as the P-values, don’t line-break in our output.
Code 24: Excel HW1 P-Indices

library (CTT)

options (width=1000)

sink(file = "ExcelHWl.txt",append = FALSE, split = TRUE)

cat ("P Values:\n")

print(reliability (HW1Test,itemal=TRUE)$itemMean)
sink()

Issue “?reliability” to get information on the function and what “values” we can get by using the scalar
(dollar symbol) not unlike a dataframe. We use the “cat” function with a line break (\n) characterto
make nice-looking text output, while we use “print” for certainvalues based on default formatting.
When in doubt, test both and use what looks most suitable. You’ll find that we canalso get our point-
biserial correlations and co-efficient alpha this way. Add the following to our code before the “sink()”
closes the output file. Remember “\n” for line breaks.

Code 25: Excel HW1, continued

cat("Point-Biserial Correlations:\n")

cat(round(reliability (HW1Test,itemal=TRUE)$pBis,2),"\n")

cat("Coefficient alpha:\n")

cat("Coefficient alpha:",round(reliability(HW1Test,itemal=TRUE)$alpha,2),"\n")

The rest is just a little trickier, because it is found in different sources. What remains are the KR-20 and
KR-21 evaluations as well as the D indices. This is a good opportunity to introduce R’s ability to computer
numbers like a calculatorin addition to performing functions. Let’s build our own KR-20 function using
the common formula. Since R uses vectors, this is a much more fluid and convenient process than Excel.
Instead of defining a cell areasuch as “A2:A10,” we can instead just refer to the vector. The code below
may appear more intimidating than it would inside our IDE due to parenthetical highlighting.

Equation 5: KR-20, KR21, and D-index

. _ k (1 _25621 piqi> D= Pupper — Piower
Kkz0 k-1 O-J? ' Nypper + Nyower

Code 26: KR-20, KR-21

cat ("KR-
20:5,round((1ength(reliability(HWlTest,itemalzTRUE)$itemMean)/(length(reliability(HWlTest,itemalzT
RUE)$itemMean)-1))*(1-(sum(reliability(HW1Test,itemal=TRUE)$itemMean*(1-

reliability (HW1Test,itemal=TRUE)$itemMean))/reliability (HW1Test,itemal=TRUE)$scaleSD*2)),2),"\n")
cat ("KR-

21:",round((length(reliability(HW1Test, itemal=TRUE)$itemMean)/(length(reliability (HW1Test,itemal=T
RUE)$itemMean)-1))*(1-

((reliability (HW1Test,itemal=TRUE)$scaleMean*(length(reliability(HW1Test,itemal=TRUE)$itemMean) -
reliability (HW1Test,itemal=TRUE)$scaleMean))/(length(reliability(HW1Test, itemal=TRUE)$itemMean)*re
liability (HW1Test,itemal=TRUE)$scaleSD*2))),2),"\n")

The above code is hard to read for humans. Commonly, scalars that are frequently used over and over
can often be set to temporaryvariables. While this is a practical tool that you will see and use, there are
risks of changing the data structure type or inadvertently referring to an old or unwanted piece of
information. It’s safer to observe where and how the source datais being retrieved at this stage, but
more advanced users concerned with the speedy execution of code might be interestedin rewriting the
above equations using the following hint:

Code 27: Advanced Coding Hint

P <- reliability(HW1Test,itemal=TRUE)$itemMean

q<- 1-p
The last part, calculating D-indices, introduces us to one of the most powerful and attractive features of
R:vector searching. Often, tutorials may recommend using the “subset” function, but it might help
demonstrate R’s power by using the following code:
Code 28: D-Index

upper <- HW1Test[score(HW1Test)$score >= quantile(score(HW1Test)$score,2/3),]

lower <- HW1Test[score(HW1Test)$score <= quantile(score(HW1Test)$score,1/3),]

cat ("D Indices:\n")

print (round((reliability(upper,itemal=TRUE)$itemMean -
reliability (lower,itemal=TRUE)$itemMean)/(length(upper$Iteml)+length(lower$Iteml)),digits=2))

What'’s new hereis the use of a pair of brackets with textinside them. Take note of the comma: when
we use brackets after a data frame (like HW1Test) we pass two argumentsinside them. The first canbe
thought of as a row selector and the second can be thought of as a column selector. Try executing the
first argumentin the selector:

Code 29: D-Index Upper Group Selector

score (HW1Test)$score >= quantile(score(HW1lTest)$score,2/3

You will notice the result is a vector of 10 true/false (or logical) values. Where the value is true, the
score has been evaluatedto be at or above the upper third of the distribution based on the median.
Where these values are true, then, the corresponding rows of our data frame will be returned. To select
columns, we could construct a selector such as “c(“Item1”,”Item2” ...)” but it is more convenient to
leave the field blank: when blank, all columns in the dataframe will be returned.

Final Results

Code 30: Excel Homework 1 Input

#Excel HW 1

HW1Test <- data.frame(

Iteml = c(1,1,1,1,1,1,1,1,1,1),
Item2 = c(0,1,0,0,1,0,1,0,0,1),
Item3 = ¢(1,1,0,1,1,1,0,0,0,1),
Item4 = c(0,1,0,0,1,0,0,0,0,0),
Item5 = c(0,1,0,0,1,1,1,0,0,1),
Item6 = ¢(1,1,0,0,1,1,1,1,1,0),
Item7 = c(1,1,1,0,1,1,1,1,0,0),
Item8 = c(0,0,0,0,1,1,0,0,0,1),
Item9 = ¢(1,1,1,0,1,1,1,1,1,1),
Iteml® = c(0,1,0,0,1,0,0,0,0,0),
Itemll = c(0,0,1,0,1,0,0,0,0,0),
Tteml2 = c(1,90,1,1,1,1,0,0,0,1),
Iteml3 = ¢(1,1,0,0,1,0,0,0,0,0),
Iteml4=c(0,0,0,0,1,1,0,0,1,0))
library (CTT)

options (width=1000)

sink(file = "ExcelHWl.txt",append = FALSE, split = TRUE)

cat("P Values:\n")

print(reliability (HW1Test,itemal=TRUE)$itemMean)

cat ("Point-Biserial Correlations:\n")

cat(round(reliability (HW1Test,itemal=TRUE)$pBis,2),"\n")

cat ("Coefficient alpha:",round(reliability(HW1Test, itemal=TRUE)$alpha,2),"\n")

cat ("KR-

20: ", round((length(reliability(HW1Test, itemal=TRUE)$itemMean)/(length(reliability (HW1Test,itemal=T

RUE)$itemMean)-1))*(1-(sum(reliability(HW1Test,itemal=TRUE)$itemMean*(1-

reliability (HW1Test,itemal=TRUE)$itemMean))/reliability (HW1Test,itemal=TRUE)$scaleSD"2)),2)," \n")
cat ("KR-
21:",round((length(reliability(HW1Test, itemal=TRUE)$itemMean) /(length(reliability (HW1Test,itemal=T
RUE)$itemMean)-1))*(1-

((reliability (HW1Test,itemal=TRUE)$scaleMean*(length(reliability(HW1Test,itemal=TRUE)$itemMean) -
reliability (HW1Test,itemal=TRUE)$scaleMean))/(length(reliability(HW1Test,itemal=TRUE)$itemMean)*re
liability (HW1Test,itemal=TRUE)$scaleSD*2))),2),"\n")

upper <- HWlTest[score(HWlTest)$score >= quantile(score(HWlTest)$score,2/3),]

lower <- HW1Test[score(HWlTest)$score <= quantile(score(HWlTest)$score,1/3),]

cat ("D Indices:\n")

print(round((reliability(upper, itemal=TRUE)$itemMean -
reliability(lower,itemal=TRUE)$itemMean)/(length(upper$Iteml)+length(lower$Iteml)),digits=2))
sink()

Figure 55: Excel Homework 1 Output

P Values:
Iteml Item2 Item3 Item4d Item5 Item6é Item7 Item8 Item9 Iteml® Itemll Iteml2 Iteml3 Iteml4d
1.0 0.4 0.6 0.2 0.5 0.7 0.7 0.3 0.9 0.2 0.2 0.6 0.3 0.3

Point-Biserial Correlations:

NA ©0.49 0.43 0.75 0.63 0.26 0.34 0.54 0.33 0.75 0.3 0.08 0.62 0.3

Coefficient alpha: 0.8

KR-20: 0.83

KR-21: 0.74

D Indices:

Iteml Item2 Item3 Itemd Item5 Item6 Item7 Item8 Item9 ItemlO Itemll Iteml2 Iteml3 Iteml4d
0.00 ©0.07 ©0.08 0.04 0.09 0.03 0.03 0.07 0.03 0.04 -0.01 0.03 0.07 0.02

Extension Material: Fizz Buzz

Statisticians often wind up being, in some part, programmers. Within the programming world,
credentials are often diverse and hard to assess. One of the common challengesfaced in filling a
position is determining whether or not the candidate, after having been in a computer science
classroom for a few semesters, is actually able to problem solve with programs. In the industry, one of
the common tasks is to give applicants a test or to ask for sample code. One of these tests borrows from
a classic educational activity: the fizzbuzz game. Asa certain web source suggests, “the ‘Fizz-Buzz test’ is
an interview question designed to help filter out the 99.5% of programming job candidates who can't
seem to program their way out of a wet paper bag.” Trying out the Fizz-Buzz test in your favorite
statistical package, in addition to R, is an extremely worthwhile exercise.

FizzBuzz is a game used to teach about common multiples. The game s played by counting from 1
upwards, and the rules are to say “fizz” when the number is divisible by 3 and “buzz” when the number
is divisible by 5. For numbers divisible by both 3 and 5, the correct response is both “fizz” and “buzz.” A
typical sequence would sounds like, “1 2 fizz 4 buzz fizz 7 8 buzz fizzbuzz.” The bonus task for this
session is to create a fizz buzz routine in R. Here are two hints:

Code 31: Session 1 Bonus Hint 1

fizzbuzz = data.frame(input = seq(1,10))
fizzbuzz$output[fizzbuzz$input > 5] <- “foo”
print (fizzbuzz)

Code 32: Session 1 Bonus Hint 2

?)J%%J)

?}J&)}
After completing this session, you should be well on your way toa confident R proficiency. Remember,
there are lots of tutorials and help files available both inside R (each help file classically ends with
example code) and on the internet.

Session 2: Excel HW?2

Source
Excel HW 2
Chapter 2 Homework: ICCs

Consider the following three items with given item parameters:

Item 1: a =1.0b =-.5¢c =20
Item 2: a=1.2b=0c =290
Item 3: a=1.5b=1c = .20

1. Draw item characteristic curves for those three items using a computer program such as Excel.

2. By looking at the graph, for someone with theta = 1, which item has the highest probability of
being answered correctly by this person?

3. Again, by looking at the graph, which item appears to be most discriminating for someone with
theta = -1?

Objectives

This exercise is fairly straightforward. InR, we just need to plot Item Characteristic Curves.
Procedures

This is a very appropriate time to discuss one of the featuresof R more akin to traditional programming
languagesthan what some statistical software packages make easily available. In R, we can define and
call our own functions just like we’ve been using those available in the core and supplementary
packages. A function, as you have already seen, can have argumentsand returns values. Let’s create our
own custom function to replicate Birnbaum’s 3-parameter model:

Equation 6: The 3-Parameter Model

-c
P“D:C+1+eqjﬂ&w

Code 33: A Custom 3PL Function

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1l+exp(-1.7*discrimination*(ability-difficulty))))

¥
P(0,1,0,0)

As you can see in the second line, we can issue the new “P” function to calculate a probability. Using this
functionality, we can now write some code to make the ICCs that looks easy to read. We'll break the
graphing process into separate steps to have more control over the output.

Code 34: Generating ICCs

png (file="Excel-HW2.png")

plot(@,0,xlim=c (-

3,3),ylim=c(0,1), type="1",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop ("I
tem Characteristic Curves",p(theta)==c+over(l-c,l+e”(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(-.5,1,0,seq(-3,3,.001)), type="1",col="red")
lines(seq(-3,3,.001),P(0,1.2,0,seq(-3,3,.001)), type="1",col="green")
lines(seq(-3,3,.001),P(1,1.5,.2,seq(-3,3,.001)),type="1", col="blue")

legend(x = -3, y =1, lwd = 1, legend=c("B=-

.5,A=1,C=0","B=0,A=1.2,C=0","B=1,A=1.5,C=.2") ,col=c("red","green","blue"))

dev.off ()

Final Results

Code 35: Excel HW2 Input

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(l-pseudoguessing)/(1+exp(-1.7*discrimination* (ability-difficulty))))

png(file="Excel-HW2.png")

plot(®@,0,xlim=c(-

3,3),ylim=c(0,1), type="1" ,xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e”(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(-.5,1,0,seq(-3,3,.001)), type="1",col="red")
lines(seq(-3,3,.001),P(0,1.2,0,seq(-3,3,.001)), type="1",col="green")
lines(seq(-3,3,.001),P(1,1.5,.2,seq(-3,3,.001)),type="1", col="blue")

legend(x = -3, y =1, lwd = 1, legend=c("B=-

.5,A=1,C=0","B=0,A=1.2,C=0","B=1,A=1.5,C=.2") ,col=c("red","green","blue"))

dev.off ()

Figure 56: Excel HW2 Output

p(8)

1.0

0.8

0.6

0.4

0z

0.0

ltem Characteristic Curves
p(e)=c+

. -
FPE T

Session 3: Excel HW3

Source
Use the three items from Chapter 2 Homework.
Item 1: a=1.0b =-.5¢c =20
Item 2: a=1.2b=0c =20
Item 3: a=1.5b =1c = .20

1. Estimate theta for Person A whose answer pattern is {1 1 0}.
Note {1 1 @} indicates Person A answered Items 1 and 2 correctly, and Item 3 wrong.

2. Estimate theta for Person B whose answer pattern is {1 © 0}.

3. Estimate theta for Person C whose answer pattern is {0 © 90}.
Objectives

There are three very general estimation styles for item response functions: parameter, ability, and joint
estimation of both. In this exercise, we conduct ability estimation with a set of given parametersand
responses: this will be done via examining the likelihood function of responses given parameters for
each ability. Although we could write our own, custom function for likelihood as we did previously for
item characteristic curves, it will be easier and more robust to callin a new R library.

Extension Material: Updating the Virtual Machine’s Operating System and R Software

After examining the CRAN repository and checking some articlesfor citations, it can be found that the

person parameter library “PP” will fit out needs. Installing packages is something we’ve already done,
but for reference:

Code 36: Installing and Loading the Person Parameter Library

install.packages(“PP”)
library (PP)

Surprise! You are very likely to encounter an error.

Figure57: Error: R version insufficient for library

Applications Places

session3.R - /home/user/Desktop — Geany

File Edit Search View Document Project Build Tools Help

Gy & @ x N Qi d% | B

| =
Symbols | Documents | session0_20141111_0400R * sessionl.R ¥ session2.R 3¢ |session3.R 3

No tags found O #excet @ “

Status | |kl

Compiler
Message!

Scribble

Terminal

linei2/2 coli0 seli0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown
@ session3.R - /home/us...

This is a normal problem for popular linux software distributions: the “package” maintained by the
operating system is not the most up-to-date version of software published by the author. Fortunately,

this is easy to fix in the Debian environment we have installed.> To patchthe issue, open up aroot
terminaland issue the following command:

Code 37: Adding a Package Repository to the Operating System

add-apt-repository 'deb http://mirrors.nics.utk.edu/cran/bin/linux/debian wheezy-cran3/"'

apt-key adv --keyserver keys.gnupg.net --recv-key 381BA480

apt-get update

apt-get dist-upgrade
The above commands will add CRAN’s repository to what our virtual machine’s operating system checks
for updates. Then, we add an encryption verification key to our operating system for secure updates.
We refresh our local database of software with the most updated version, and then we install any
necessary updates. You might see something like:

Figure 58: Software Upgrade Messages

Applications Places

Terminal (as superuser) - |o

File Edit View Search Terminal Help

root@renvironment :/home/user# apt-gst dist-upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade. .. Done

The following NEW packages will be installed:
liblzma-dev 1ibtiff5

The following packages will be upgraded:
file icedtea-6-jre-cacao icedtea-6-jre-jamvm iceweasel libeurl3-gnutls 1ibflac8 libgerypt1l libmagicl
1ibmozjs24d 1ibnss3 libnss3-1d libpurple-bin 1ibpurple@ libtasnl-3 libxml2 linux-headers-3.2.0-4-486
1linux-headers-3.2.6-4-686-pae linux-headers-3.2.0-4-common linux-image-3.2.0-4-486 linux-libc-dev mutt
openjdk-6-jre openjdk-6-j re-headless openjdk-6-jre-lib pidgin-data ppp python-libxml2 r-base r-base-core
r-base-dev r-base-html r-cran-boot r-cran-class r-cran-cluster r-cran-codetools r-cran-foreign
r-cran-kernsmooth r-cran-lattice r-cran-mass r-cran-matrix r-cran-mgev r-cran-nlme r-cran-nnet r-cran-rpart
r-cran-spatial r-cran-survival r-doc-html r-recommended wget xulrunner-24.0

50 upgraded, 2 newly installed, @ to remove and O not upgraded.

Need to get 176 MB of archives.

After this operation, 12.1 MB of additional disk space will be used.

Do you want to continue [Y/n]?

n3.R - /nome/us,., B Terminal (as superuser)

You can verify these updates. They might take a few minutes. Sometimes, rebooting is necessary
depending on what all gets upgraded in the system. Since virtual machines are fairly efficient, it doesn’t
hurt to just reboot on principle. After re-opening our IDE, we can see that R has indeed been upgraded:

5 See http://cran.r-project.org/bin/linux/debian/README for a detailed discussion

http://cran.r-project.org/bin/linux/debian/README

Figure59: R Upgraded

Applications Places

session3.R - /home/user/Desktop ~ Geany
File Edit Search View Document Project Bulld Tools Help
5~ 8 - [% & Ml Q|| 1% | B¢

f f Jump to the entered line number
Symbols | Documents | | session3.R %

No tags found O #oecel w3 D
[
6-p-1 u (s2-bit

3

Status

Compiler

Messages

Scribble

Terminal -

q()' to quit R.

Line: 1/ 2 col: 0 sel:0 INS TAB mode: Unix (LF) encoding: UTF-8 filetype: R scope: unknown

'@ session3.R - /home/us..

The first thing we should do, now, is to upgrade our packages:
Code 38: Upgrading Internal R Packages

update. packages ()

Procedures
After that’sdone, we can go back to installing the Person Parameter package:
Code 39: Installing the Person Parameter Library

install.packages(“PP”)
library (PP)

From here, it’sjust a matter of calling up the appropriate functions provided by this library and sending
the appropriate argumentsto these functions. We can record our output using our separate syntax and
output approach so far. The documentation for this package is available online, and like many pieces of
R documentation, it is both in-depth and a little challenging to getinto at first for newcomers. R writers
usually use conventions for naming and terms with a different, programmatic perspective than many
psychometric articles and texts sometimes do; developing the understanding thata “hierarchical linear
model” and a “mixed-effects model” are referring, in general, tosimilar concepts is part of developing
an ear for the literature.®

|”

If we just fed a dataframe containing responses to the person parameter function, we wouldn’t be giving
it everything it needs: it requires knowing the difficulty (b, we call it difficulty, too) and slope (a, we call
it discrimination) parameters. If we include these in the same dataframe asextra columns, though, the
function will get confused. This is a great time to introduce the concept of attributesand to showcase
one of their applications. As you have seen, a data frame object contains vectors of data of varying types
referenced with the scalar (“S”) operator, such as “fooSbar.” Applying a function to a dataframe often
propagatesthat function throughout its columns. Attributesare a way of attaching data without putting
it in that propagating schematic structure. Let’s create our responses dataframe with columns
representing responses to eachitem, and then we will set attributes representing properties of each
item suitable for the Person Parameter function:

6 See http://cran.r-project.org/web/packages/PP/vignettes /intro_pp.html foran in-depth estimation guide

http://cran.r-project.org/web/packages/PP/vignettes/intro_pp.html

Code 40: Creating the appropriate data objects

hw3test <- data.frame(

iteml = c(1,1,9),
item2 = c(1,0,0),
item3 = c(0,0,0)

)

attr(hw3test,difficulty_parameter) <- c(-.5,0,1)
attr(hw3test,discrimination_parameter) <- c(1,1.2,1.5)
attr(hw3test, guessing _parameter <- c(9,0,.2)

Although it’s possible to keep the parametersin their own variables, it’s quite cleaner (and therefore
safer) to keep them associated with the data. For more information, issue the following commands:
Code 41: Examining the workspace

1s()

str(hw3test)
The “Is” command lists objects in the current environment. In the linux environment, “Is” is an essential
command to check the file contents of a directory. The “str” command gives a string-like output of the
object’s information. In the case of our hw3test data frame, this includes the columns of item data and
attributesrepresenting item parameters. Inboth cases, the row-column orientation is vector-oriented:
the first position of each itemvector refers to the first respondent, and the first position of each
parameter vector refers to the first question. It canbe easy to forget this and accidentally transpose.

Now that we’ve taken a little bit of time to get the right, add-on packagesand build our data, all we
need to do is call the functions. Intraditional software packages, this inevitably involves clicking around
and having additional windows appear. In R, all it involves is calling a function with some arguments:

Code 42: Ability Estimation

PP_4p1(

respm = as.matrix(hw3test),

thres = attr(hw3test, "difficulty_parameter"),
slopes = attr(hw3test,"discrimination_parameter"),
lowerA = attr(hw3test,"guessing_parameter"),

type = "mle”

In the above example, we used line-breaks to make the list of arguments more readable as we have
been for dataframes. Inthe help files for this function (try “?PP_4pl” to see them yourself) the “respm”
argument must be a matrix, so we use the “as.matrix()” function to coerce the data.frameintothe
appropriate object type. For the item parameters, we use the “attr()” function to accessthe data we
stored as attributes of the hw3test object. Finally, the “type” argument is referenced in the help file. We
use maximum likelihood estimation in this instance. This showcases some of R’s potential: we canjust
change that argument from “mle” to “wle” to switch to weighted maximum likelihood.

Remember to save syntax and to use the “sink()” function to structure our code to place its output in a
file suitable for submission and archival. It can be useful to add comments to functions to reference
their argumentsif you do not plan on committing them to memory and want to avoid continually
opening up the help files. Inaddition, although the help files are accessible inside R, it’s also possible to
have a dual setup browsing the online help files via the CRAN repository.” More advanced users may
want to experiment with using the desktop workspace features to have more thanone “desktop.”

7 http://cran.r-project.org/web/packages/

http://cran.r-project.org/web/packages/

Final Results
Code 43: Excel HW3 Input

#Excel HW 3

library (PP)

hw3test <- data.frame(
iteml = c(1,1,0),
item2 = c(1,0,0),
item3 = c(0,0,0)

attr(hw3test, "difficulty_parameter") <- c(-.5,0,1)
attr(hw3test, "discrimination_parameter") <- c(1,1.2,1.5)
attr(hw3test, "guessing parameter") <- c(90,0,.2)

options (width=1000)

sink(file = "ExcelHW3.txt",append = FALSE, split = TRUE)
print (str(hw3test))

print (PP_4p1(

respm = as.matrix(hw3test),

thres = attr(hw3test, "difficulty parameter"),

slopes = attr(hw3test,"discrimination_parameter"),
lowerA = attr(hw3test,"guessing_parameter"),

type = "mle"

))

sink()

Code 44: Excel HW3 Output

‘data.frame’: 3 obs. of 3 variables:
$ iteml: num 1 1 0
$ item2: num 1 0 ©
$ item3: num © © ©
- attr(*, "difficulty parameter")= num -0.5 0 1
- attr(*, "discrimination_parameter")= num 1 1.2 1.5
- attr(*, "guessing parameter")= num © © 0.2
NUL L
Estimating: 3pl model ...
type = mle
Estimation finished!
estimate SE
[1,] ©.7092 1.1133
[2,] -0.5901 1.2786
[3,] -Inf NA

Session 4: Excel HW4

Source

Using data from Table 4.3 (p. 74), create a graph like Figure 4.5.
Use three models:

One-parameter model: b = 0.17

Two-parameter model: b = 0.18; a = 0.56

Three-parameter model: b = ©0.76; a = 1.23; c = .25

Table 1: HSR Table 4.3

0 p 12 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 20 0 0 0OO1 0O000O0O0 O 1 0 0 O O O O 1 0 1
-1 25%% 01 01 0O010O0OO0O OT1 0 O0O OT1 0 0 0 O
O 40 1 0 0 01 1 00 0 O 1 0 O 1 0 O 1 0 1 1
1 5% 1111111011 1 O 1 1 O 1 O 1 O 1
2 90% 1 111111111 01 1 1 1 1 1 0 1 1

Table 2: Model Parameters

Model a b c

1P 1 017 O
2P 0.56 0.18 O
3P 1.23 0.76 0.25

Objectives

Because we already know how to plot item-characteristic curves, the only additional work required in

this task is to plot observed points for comparison against each of the three models.

Procedures

First, let’screate a data frame representing the observed P values and ability levels:
Code 45: Creating a dataframe for graphing

hwdtest <- data.frame(
ability = c(-2,-1,0,1,2),
p_obs = c(.2,.25,.4,.75,.9)
)
Let’sthen pull in code we developed for drawing ICCs in HW2:
Code 46: Drawing ICCs
P <- function(difficulty,discrimination,pseudoguessing,ability) {

return (pseudoguessing+(l-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))

¥
plot(0,0,xlim=c (-

3,3),ylim=c(0,1),type="1",xlab=expression(theta),ylab=expression(p(theta)),main=expression(atop("I

tem Characteristic Curves",p(theta)==c+over(l-c,l+e”(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(.17,1,0,seq(-3,3,.001)),type="1",col="red")
lines(seq(-3,3, .001),P(.18,.56,0,seq(-3,3,.001)),type="1",col="green")
lines(seq(-3,3,.001),P(1.23,.76,.25,seq(-3,3,.001)),type="1",col="blue")

legend(x = -3, y =1, lwd = 1, legend=c("B=-

.17,A=1,C=0", "B=.18,A=.56,C=0", "B=.76,A=1.23,C=.25"),col=c("red", "green", "blue"))
dev.off()

Above, we’ve changed the arguments sent to the custom “P()” function to fit our new curves. We also
need to add the observed data as points without a line, and we should add it to our legend. The two

changed lines will look like so:

Code47: New line drawing, modified legend

lines (hw4test$ability,hwdtest$p_obs,type="p", col="orange")
legend(x = -3, y =1, lwd = 1, legend=c("B=-
.17,A=1,C=0", "B=.18,A=.56,C=0", "B=.76,A=1.23,C=.25" ,”0Observed

"oy

Data”), col=c("red","green", "blue",”orange”))

Final Results

Code 48: Excel HW4 Input

#Excel HW 4
P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))

hw4dtest <- data.frame(

ability = c(-2,-1,0,1,2),

p_obs = c(.2,.25,.4,.75,.9)

)

png(file="Excel-HWA.png")

plot(@,0,xlim=c(-

3,3),ylim=c(0,1),type="1",xlab=expression(theta), ylab=expression(p(theta)),main=expression(atop ("I
tem Characteristic Curves",p(theta)==c+over(1-c,1+e”(-1.7*a*(theta-b))))))
lines(seq(-3,3,.001),P(.17,1,0,seq(-3,3,.001)),type="1",col="red")
lines(seq(-3,3,.001),P(.18, .56,0,seq(-3,3,.001)),type="1",col="green")
lines(seq(-3,3,.001),P(1.23,.76,.25,seq(-3,3,.001)),type="1",col="blue")
lines (hwdtest$ability,hwdtest$p_obs,type="p", col="orange")

legend(x = -3, y =1, lwd = 1, legend=c("B=-

.17,A=1,C=0", "B=.18,A=.56,C=0", "B=.76,A=1.23,(C=.25","Observed

Data"), col=c("red", "green", "blue","orange"))

dev.off()

Figure 60: Excel HW4 Output

ple)

0.8

0.6

04

02

0.0

ltem Characteristic Curves
ple)=c+

_ s
el TR

— B=—17A=1,C=0
B-.18,A=56,G=0

—— B=76,A=1.23,G=25

Observed Data

Session 5: Excel HW5

Source
Use the three items from Chapter 2 Homework.

Item1: a =1.0b =-.5¢c =290
Item 2: a=1.2b=0c =290
Item 3: a=1.5b =1c = .20

1. Draw a test characteristic curve for those three items using a computer program such as Excel.
2. Draw item information curves for those three items using a computer program such as Excel.
3. By looking at the graph, for someone with theta = 1, which item has the highest information?

4. Draw a test information curve for this three-item test. For what range of thetas dose this
test offer most information?

Objectives

New types of graphs must be made in this assighment. We will create functions for the test
characteristic function, iteminformation curves, and test information curves. We will prepare graphs.

Procedures

Since the test characteristic curve is just an amalgamation of item characteristic curves, it’s easy to add
together values using item characteristic curve functions we’ve already made to produce the output:
Code 49: Making a TCC function

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(l-pseudoguessing)/(1+exp(-1.7*discrimination*(ability-difficulty))))

}

testS5tcc <- function(ability) {

return (P(-.5,1,0,ability)+P(0,1.2,0,ability)+P(1,1.5,.2,ability))
}

Graphing the result is easy, if we re-use what we’ve done before:
Code 50: Graphing a TCC

plot(®@,0,x1lim=c(-3,3),

ylim=c(@,3),type="1",xlab=expression(theta),ylab=expression(p(theta)),

main=expression("Test Characteristic Curve"))

lines(seq(-3,3, .001), test5tcc(seq(-3,3,.001)),type="1",col="red")

legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))
Note that we change a few parameters, such as the “ylim” argument to the “plot()” function and the “y”
argument to the “legend” function to better graph out the different domain of this function. The next
part gets interesting. Information functions canbe expressed precisely using derivatives. R isn’t meant
to be a computational algebra environment — programs like Mathematica and open source languages
like Maple or Julia do that— but R can handle simple derivations well enough to justify their use.

In order to take advantage of R’s ability to calculate derivatives, we need to supply it with clean, simple
mathematicalformulae in the form of objects called “expressions.” We’ve already seen these before
when dealing with making our ICC formula look nice in a plot. There’s more than one way to proceed,
but let’s use a somewhat easy-to-read approach for now. We will define the item characteristic curves
as mathematical expressions, and then we will define the item information curves as functions making
use of the derivative to replicate the following formula.

Equation 7: Item Information Function
Pl (9)2

19 = @0

Code 51: Creating the Item Information Functions

itemlicc <- expression(0+(1-0)/(1+exp(-1.7*1*(ability+.5))))

item2icc <- expression(0+(1-0)/(1+exp(-1.7*1.2*(ability-0))))

item3icc <- expression(.2+(1-.2)/(l+exp(-1.7*1.5%(ability-1))))

itemliic <- function(ability) {eval(D(itemlicc, "ability"))~2/(eval(itemlicc)*(1-eval(itemlicc)))}
item2iic <- function(ability) {eval(D(item2icc, "ability"))”2/(eval(item2icc)*(1l-eval(item2icc)))}
item3iic <- function(ability) {eval(D(item3icc, "ability"))~2/(eval(item3icc)*(1-eval(item3icc)))}

The amount of parentheses may be daunting at first. Feel free to use line-breaks and even tab notation

if that helps.® Now that we have “function” type objects returning the item information statistic for a
particular set of items, we can goahead and graph them using the same techniques we’ve already used:

Code 52: Graphing some lICs

plot(0,0,xlim=c(-

3,3),ylim=c(0,1.5),type="1",xlab=expression(theta), ylab=expression(I(theta)),main=expression("Item
Information Curves"))

lines(seq(-3,3,.001),itemliic(seq(-3,3,.001)),type="1",col="red")
lines(seq(-3,3,.001),item2iic(seq(-3,3,.001)),type="1",col="green")
lines(seq(-3,3,.001),item3iic(seq(-3,3,.001)),type="1", col="blue")

legend(x = -3, y = 1.5, 1lwd = 1, legend=c("Item 1","Item 2","Item 3"),col=c("red","green","blue"))

The last portion, test information graphing, is simple: we’ve already combined item probabilities, so
combining item information shouldn’t seem too novel as far as the R code is concerned:
Code 53: Making the Test Information Curve

test5tic <- function(ability) {
return (itemliic(ability)+item2iic(ability)+item3iic(ability))

plot(@,0,xlim=c(-

3,3),ylim=c(0,3),type="1" ,xlab=expression(theta),ylab=expression(p(theta)),main=expression("Test
Information Curve"))

lines(seq(-3,3,.001), test5tic(seq(-3,3,.001)),type="1",col="red")

legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))

All that remains is to tie these all together with “png()” and “dev.off()” function calls to ensure our
output is appropriately separate from our syntax and in a format we could turn in or use elsewhere.

8 See https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml for anin-depth discussion

https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml

Final Results

Code 54: Excel HW5 Input

#Excel HW 5

P <- function(difficulty,discrimination,pseudoguessing,ability) {
return (pseudoguessing+(1-pseudoguessing)/(1l+exp(-1.7*discrimination*(ability-difficulty))))

test5tcc <- function(ability) {
return (P(-.5,1,0,ability)+P(0,1.2,0,ability)+P(1,1.5,.2,ability))

}
png (file="Excel -HW5A.png")
plot(@,0,xlim=c (-

3,3),ylim=c(0,3), type="1",xlab=expression(theta), ylab=expression(p(theta)),main=expression("Test

Characteristic Curve"))

lines(seq(-3,3,.001), test5tcc(seq(-3,3,.001)),type="1",col="red")
legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))

dev.off ()
itemlicc
item2icc
item3icc
itemliic
item2iic
item3iic

<-
<-
<-
<-
<-
<-

expression(0+(1-0)/(1+exp(-1.7*1*(ability+.5))))

expression(0+(1-0)/ (1+exp(-1.7*1.2*(ability-0))))
expression(.2+(1-.2)/(1+exp(-1.7*1.5%(ability-1))))

function(ability) {eval(D(itemlicc, "ability"))~2/(eval(itemlicc)*(1-eval(itemlicc)))}
function(ability) {eval(D(item2icc, "ability"))”~2/(eval(item2icc)*(1l-eval(item2icc)))}
function(ability) {eval(D(item3icc, "ability"))”~2/(eval(item3icc)*(1l-eval(item3icc)))}

png (file="Excel-HW5B.png")
plot(@,0,xlim=c (-

3,3),ylim=c(0,1.5),type="1",xlab=expression(theta), ylab=expression(I(theta)),main=expression("Item

Information Curves"))

lines(seq(-3,3,.001),itemliic(seq(-3,3,.001)),type="1",col="red")

lines(seq(-3,3,.001),item2iic(seq(-3,3,.001)),type="1",col="green")
lines(seq(-3,3,.001),item3iic(seq(-3,3,.001)),type="1",col="blue")

legend(x = -3, y = 1.5, 1lwd = 1, legend=c("Item 1","Item 2","Item 3"),col=c("red","green","blue"))

dev.off ()

test5tic <- function(ability) {

return (itemliic(ability)+item2iic(ability)+item3iic(ability))

}
png (file="Excel-HW5C.png")
plot(0@,0,xlim=c(-

3,3),ylim=c(0,3), type="1" ,x1lab=expression(theta), ylab=expression(p(theta)),main=expression("Test

Information Curve"))

lines(seq(-3,3, .001),test5tic(seq(-3,3,.001)),type="1",col="red")

legend(x = -3, y = 3, lwd = 1, legend=c("Test 1 (Items 1-3)"),col=c("red"))

dev.off ()

Figure 61: Excel HW6 Output

p(®)

Test Charadteristic Curve

ltem Information Curves

Test Information Curve

e |
— = :
Item 2
e — .
|
/
/ :
/ 3
/ B 5w ' \\
// 2 = - /
21 /
/
-

Session 6: Excel HW6

Source
DIF Analysis
Conduct a DIF analysis using data “dn211dif.csv” (a 10-item test with N = 200) between Group 1 and
Group 2. Use the 2PL model. Identify DIF items.

Objectives
We need to conduct a DIF analysis.
Procedures

Things are starting toget more complex, but that’sactually a good thing. The more practical the
problem, the more likely it is that someone has already writtenan R package to tackle it. As we’ve seen,
some tasks such as ability estimation are made very easy when existing packages already supply
functions, but we canalso approach things by making functions of our own.

We'll start by reading in the source data file. Assuming you already have it in a particular location —in
the case of the example below, it’s been placed in the /media/sf_HOST shared folder — bringing the data
into R is easy! There are many advanced configuration options that can be browsed in the help files.
Code 55: Importing Data

hwedata <- read.csv("/media/sf HOST/dn211dif.csv")

summary (hwedata)
There are some challenges with this data from its source that are revealed when we use the
“summary()” function. First, the dataset contains ID and group assignments: while this isn’t directly a
problem, as we’ve seen before, it can sometimes fool add-on packages into treating these columns like
dataresponses. Second, items 7-10 use lower-case while items 1-6 use uppercase lettersat the start of
each name. We can clean both of these issues with just a few commands.
Code 56: Some data cleaning

hwetest <- hwedata[TRUE,c(3,4,5,6,7,8,9,10,11,12)]

colnames(hwétest) <-

c("Item1","Item2","Item3","Item4","Item5","Item6","Item7"," Item8","Item9"," Item10")

attr(hwétest, "group") <- hwedata$Group
In the first line, we use the selector bracketswe’ve seen before. Remember, the first argument tells R
which rows to select: by giving it one TRUE value, we quickly tell R that every row is okay for selection.
The second argument tells R which columns to select. You can refer to them by name with quotes or just
select the number, starting with 1. In this case, we use numbers for efficiency. The second command
just assigns new names to the resulting columns that use a consistent capitalization scheme. Now we
have a “clean” data frame, hwétest, and the original source unmodified in hwédata.

One of the most amazing featuresof Ris the limitless, free potential of its package system. This is also
one of its greatest challenges for users looking to perform some advanced statistical analysis. Rather
than re-invent the wheel itself, which should we use? This is where the CRAN Task View and other help
file browsing comes in handy. If we use SPSS, IRTPRO, or other software packages, we are essentially
trusting the developer to have understood and appropriately programmed the mathematics. With R
packages, help files usually cite sources and the original programming language is freely available for
inspection and validation. Let’s make use of the “difR” package and go forward by using Raju’s area.?

% See http://cran.r-project.org/web/packages/difR/difR.pdf for the relevant helpfiles.

http://cran.r-project.org/web/packages/difR/difR.pdf

Remember, first we must load the “difR” package. That might require installing the package first.
Code 57: Install difR package

install.packages(“difR”)
library (difR)

This might take a little longer than previous installations because of the number of co-dependencies.
The help file for difR gives a lot of information. The “difRaju” function has the following arguments:

Figure 62: difRaju documentation excerpt

difRaju(Data, group, focal.name, model, c=NULL, engine="1tm", discr=1,
irtParam=NULL, same.scale=TRUE, alpha=0.05, signed=FALSE, purify=FALSE,
nrlter=10, save.output=FALSE, output=c("out","default"))

Let’s build our function call to handle these arguments. In help files, generally, an argument listed such
as “purify=FALSE” implies that the default value for the argument is FALSE: if we do not set it, it’s false.

This means we could avoid setting it if we wanted it to be false, but for this example we’ll be redundant:

Code 58: Calling the difRaju function

difRaju(
Data = as.matrix(hwétest),
group = attr(hwéetest, "group"),
focal.name = 1,
same.scale = FALSE,
model = "2PL"

)

Notice that we did not request purification and specified thatitems aren’t yet scaled between groups.
This is the “anchor all items” step in IRTPRO translatedinto R. The call will give the following output:

Figure 63: difRaju initial output

Detection of Differential Item Functioning using Raju's method
with 2PL model and without item purification

Type of Raju's Z statistic: based on unsigned area
Engine 'ltm' for item parameter estimation
Raju's statistic:

Stat. P-value
Iteml -1.1545 ©0.2483

Item2 -1.4217 0.1551

Item3 2.2838 0.0224 *

Item4 1.3486 0.1775

Item5 0.8661 ©.3865

Itemé -0.0554 0.9558

Item7 -1.5553 0.1199

Item8 2.9140 0.0036 **

Item9 -0.9817 0.3263

Iteml®o ©0.6810 0.4959

Signif. codes: @ '***' @.001 '**' 0.01 '*' ©0.05 '.' 0.1 ' ' 1

Detection thresholds: -1.96 and 1.96 (significance level: 0.05)
Items detected as DIF items:

Item3
Item8

Output was not captured!

Extension Materials: DRY

In programming, a common maximis “DRY” or “Don’t Repeat Yourself.” We’re about to make a lot of
graphs — why copy-paste code that might need changing and create a big headache? Let’s build some
functionality toreplicate work without having to replicate effort.

Code 59: Replicating Plots

makeplot <- function(item) {

x1 <- plot(group_1, type = "ICC", item = item)[,1]

yl <- plot(group_1, type = "ICC", item = item)[,2]

x2 <- plot(group_2, type = "ICC", item = item)[,1]

y2 <- plot(group 2, type = "ICC", item = item)[,2]

png (file=paste("Excel-HW56-Item",item," .png", sep=""))

plot(@,0,xlim=c (-

3,3),ylim=c(0,3), type="1" ,xlab=expression(theta),ylab=expression(p(theta)),main=paste("Differentia
1 Item Functioning\nItem",item))

lines(x1,yl,type="1",col="red")

lines(x2,y2,type="1", col="blue")

legend(x = -3, y = 3, lwd = 1, legend=c("Group 1","Group 2"),col=c("red", "blue"))
dev.off()

¥

sapply(seq(1,10),makeplot)

The above code will have afew odd outputs in the console, but that’s not important at this stage and
level of work. What we do here is take advantage of R’s data scoping to extract the X- and Y- coordinates
of eachICC, then display them in a new, advantageous way based on our specifications. We build a
function that can do this for any given item, then send instructions to do so with items 1-10.

Final Results
Code 60: Excel HW6 Input

#Excel HW6
library (difR)
library(ggplot2)
hwédata <- read.csv("/media/sf_HOST/dn211dif.csv")
hwétest <- hwédata[TRUE,c(3,4,5,6,7,8,9,10,11,12)]
colnames(hwétest) <-
c("Item1","Item2","Item3","Item4","Item5","Item6","Item7"," Item8","Item9","Item10")
attr(hwétest, "group") <- hwedata$Group
hwedif <- difRaju(
Data = as.matrix(hwétest),
group = attr(hwéetest, "group"),
focal.name = 1,
same.scale = FALSE,
model = "2PL"
)
sink(file = "ExcelHW6.txt",append = FALSE, split = TRUE)
print (hwedif)
sink()
group_1 <- tpm(
data = hwetest[attr(hwetest,"group") == 1,],
type = "latent.trait",
constraint = cbind(seq(1:10),1,0),
)
group_2 <- tpm(
data = hwé6test[attr (hwétest,"group") == 2,],
type = "latent.trait",
constraint = cbind(seq(1:10),1,0),
)
makeplot <- function(item) {
x1 <- plot(group_1, type
yl <- plot(group_1, type = "ICC", item = item)[,2]
x2 <- plot(group_2, type = "ICC", item = item)[,1]
y2 <- plot(group_2, type = "ICC", item = item)[,2]

"ICC", item = item)[,1]

png (file=paste("Excel-HW6-Item",item,".png",sep=""))

plot(®@, 0, xlim=c (-
3,3),ylim=c(0,3),type="1",xlab=expression(theta),ylab=expression(p(theta)),main=paste("Differentia
1 Item Functioning\nItem",item))

lines(x1,yl,type="1",col="red")

lines(x2,y2,type="1",col="blue")

legend(x = -3, y = 3, lwd = 1, legend=c("Group 1","Group 2"),col=c("red", "blue"))

dev.off()

¥
sapply(seq(1,10),makeplot)

Figure 64: Excel HW6 Output

Detection of Differential Item Functioning using Raju's method
with 2PL model and without item purification

Type of Raju's Z statistic: based on unsigned area
Engine 'ltm' for item parameter estimation
Raju's statistic:

Stat. P-value
Iteml -1.1545 0.2483

Item2 -1.4217 ©.1551

Item3 2.2838 0.0224 *

Item4 1.3486 0.1775

Item5 ©0.8661 0.3865

Item6 -0.0554 0.9558

Item7 -1.5553 ©.1199

Item8 2.9140 0.0036 **

Item9 -0.9817 0.3263

Itemlo ©0.6810 ©.4959

Signif. codes: @ "***' 9.001 '**' .01 '*' 0.05 '.' 0.1 ' ' 1

Detection thresholds: -1.96 and 1.96 (significance level: 0.05)
Items detected as DIF items:

Item3
Item8

Output was not captured!

Figure 65: Excel HW6 Output, Continued
Ditferential ltem Functioning Differential ltem Functioning Differential ltem Functioning
Item 1 Item 2 Item 3

p(®)

p(8)

p(®)

pi6)

Ditferential ltem Functioning

Differential Item Functioning Differential Item Functioning

ltem 4 ltem 5 ltem &
N N N
o | o | o |
o o o
w7 w7 w7
w | E w E w
s = - = -

Ditferential ltem Functioning

Differential ltem Functioning Differential ltem Functioning

ltem 7 Item 8 Item 9
o | = | = |
w7 w7 w7
= | = | = |
I I I
w | T w T w |
= e =
T T
-3 2 -1 o 1 2 3 -3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3
o f f
Differential ltem Functioning
ltem 10
B
2

Evaluation and Expansion

The scope of this guide is somewhat ambitious. We’ve covered no small amount of materialand
touched on some valuable programming paradigms. However, it remains true that we haven’t set many
open-ended challenges. These can easily be found for the motivated learner by using the questions from
the end-of-chapter exercises in the Hambleton, Swaminathan, and Rogers text. This document is
probably best used as a springboard for further, independent exploration to the degree desired by the
reader.

The free and open nature of R aligns with the virtues of scholarly research. If you’ve found R to be
effective or interesting, consider trying to use it to replicate previous work you’ve done in other
statistical software packages. During these exercises, as well as any imported from the IRT textbooks
available, it can be valuable to have an overarching paradigm to approach what is, for all intents and
purposes, statistical programming. R provides an interface powerful and flexible enough to meet the
needs of the theoretical as well as the practical researcher.

This guide will conclude with a simple piece of expansion material. Much of statisticsand programming
can be thought of as algorithmic work, and no small amount of pedagogy has been dedicated to helping
achieve mastery of this developmental framework. As your adventures in statistics and R continue,
consider the advice of George Pdlya in “How to Solve It:”

1. Understand the problem
2. Deuvise a plan

3. Carryout the plan

4. Look back on your work

Table of Figures

=0T I R @ o 1Tt f VT3S 2
FIgUre 2: Prices Of SOftWaTE ... e et e e e e e ans 3
Figure 3: VirtualBox Main WINAOWoiiiiiiiiiiiii et et et e et et e e e e ans 4
Figure 4: Naming the New Machine.........coooiiiiiiiiiii e 4
Figure 5: AlloCating RAMttt e et e e e e et et eaneaneans 5
Figure 6: Createa VirtUal Hard DIiVe........ccuuiiii it e e e e e e e 5
Figure 7: Virtual Disk Image Specificationcoouiiiiiii e 5
FIGUre 8: FIXEA DiSK SIZE ...vniiniiiii e e e e e e e e e e ans 6
FIGUIre 9: DisK Size 10 L2G B . .. iuiiiiiiiie ittt et et et eaneans 6
Figure 10: Confirm VIM Creation ccu. e ettt e e e e e e e et e et e et e e e e e e s e eaeanns 7
Figure 11: Mounting @ CD-ROM IMage......uiiiiiiiiie et e e e e e e e e e e e nanees 8
FIUre 12: Shared FOIAEIS ettt e e e e e e e e aeans 8
o= L It I) o= o P 9
Figure 14: The Guest Additions AutO-RUN DIalog........c.viuiiniiiiiiii e 9
Figure 15: Root ComMMaNd PromPEceuiiiiiiiiie ettt e e e et et et e et e e e e eenes 10
Figure 16: The geany IDE INItial VIEWcunirie e 11
Figure 17: Geany IDE WIth R..... oo e e e e ans 12
FIgUre 18: SAVING R COU@ .. u ittt e e e e e e e e e e e et e e et st et et st e e e eaneans 13
Figure 19: Saving the Maching State........coeuiiiiiiii et e ea e 13
Figure 20: Saved Maching Stateicuu i et e s et e et e e e s e et eees 14
Figure 21: Selecting @ Maching for EXPOrt...... ..o 14
Figure 22: Selecting EXPOrt OPLioNnSouiuiiiiiiii e e e e e et e e et et e e e eaaees 15
Figure 23: Reviewing EXport Metadata...........oouiiniiiiiii e 15
Figure 24: File Browser Main WINQOWc.uuiiiuiiiiiiine ettt e e e e et e e e e e et e eeieeeans 16
Figure 25: ROOt FIlESYSTEIMeniiii e et e e e e e e e e e e e e e et e e e e e ee e ans 16
FIgUre 26: MEdia FOIOBIcueiiii e e e e e e e e e e te et e e et e e e n e e e aae e ans 17
Figure 27: BOOKMArKed Dir€CLONYcuniiiiiii ettt e e e e e e et e et e et eaeeaeeanees 17
Figure 28: TeXt fil@ DUSY EITOF .. .cui it et e s e et s e et e e e s e ean e eees 20
Figure 29: Saving to virtual maching desktopccouiiiiiii i 21
FIgUre 30: CoPYINg @ Ml eu i e e e e e e e e e e e et e e aans 21
Figure 31: Debian DeSKEOP . uuivniiii i e e e e e e e e e e e e e e ans 22
Figure 32: Starting SEany IDE.o e 23
FIBUrE 33: IDE LOQEM. ittt et ettt e et et e e e et e e b e et e an s et e e e e eebneeans 23

Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44.
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:

BT 80 a1 e A=) 23

IDE With R Terminal.. ..ot e e 24
SAVING @ SYNTAX FIl . evniiii et e 24
Code Highlighting after File SAVEouniiiiii e 25
Y o] W O @eTo [N @ 11 4 o 11 R 26
Fi¥o [0 1Y -a o] 0 g 1=l ole] a9 0 1 =T o1 - 26
AN R NI D fIlE e e aaas 27
)Y 1 D e 101 4 o 11 | TP 27
Beginning package installationc.oiiiiiiiii e 29
Confirming personal directories, selecting a mirrorc.cooiii i, 29
RIS CASE SENSITIVE L. ... et 30
Successful package iNStallation............oeuieiiiii i 30
LIbraries 10adedoouu e 31
Summary command OUEPULcunieiiii e e e e e e e e e eans 31
(0= T o1 U1 1Y =0T U1 of o 11 | 32
SESSION O OUEPUL FIlE o..enieiiiii e e e e e e e e e e e e ens 32
Default syntax output appearance in windows notepad..........cceeevviiiiiiiiiineiiiiiieeee e, 33
FiXiNg lIN@ @NAINGS . cvniritiii et e e e 33
Yo T o TN =T o Vo 1 =4S 34
[CCS FOr the Class10 3PLceeuuieiiii ettt ettt ettt ettt e e et ettt e e eeaba e e eabaeeeees 35
ool =To BTy F T T PRSPPI 35
EXCEl HOMEWOIK 1 OULPUL.....eititiitii i e e et e et e et e et e et e et e eaeeaaeanas 39
EXCEI HW2 OULPUL. ..ottt et e e e e e et e et e et e et e et e et e eaeenaanaas 41
Error: R version insufficient for library ... 42
SOftWAre UPZrade MESSaEES. .. uuuiuniiiiiieeeetie ettt eetete et et eae it et et et e e sta et etaenaenaenaenns 43
2T ==Y =T o PN 44
ool I YA T o U | 48
EXCEI HWB OULPUL....eieitiiti i e e e e e et e et e et e et e et e eneeaeenaanaan 51
difRaju documentation EXCEIPL.. ...t 53
difRAJU INITIAT OULPULeee e e e et e e e et e e e a e e e e enaas 53
ool I YL@ TV T | 55

Excel HWB Output, CONTINUED.cuuiie i e e e e e e e e e e eens 56

Table of Code

Code 1: Installing Kernel Headers for the i486 kernelcoeniiiii i 10
Code 2: Installing VirtualBox Guest AdditioNs..........couiiiiiiiiii e 10
Code 3: Install the R Base System, development files, and a text editor............ccoeeiiiiiiiiiiiiiiiiinennn.. 10
Code 4: Adding User to the Shared FOlers Sroups.......c.uuuiieiiiiiiiiee e e e ans 10
Code 5: Restart the Machingceeiiii e e 11
Code 6: Starting R iNsSide @ TermMiNal.......vveuniiiiii e e e e e eans 11
Code 7: Starting Rinvanilla MOdeivniiiii e 24
00T (oI Y STy ol W O] 4=) 25
0o [l Y STy o] W I} 43 25
(0o To [T (0 N 2 o 1o [N] [Y ool Y- 26
(0o To [T N T T (o W OB} 1 -) PR 27
Code 12: Relative folder 10Cation SETUPvunieiiie e e e e e 28
Code 13: Installing R add-0ons Via CRANcuiiiiiiiiiie e e e e e e e e e e e e e e e e e eans 28
Code 14: Package installation, CONtinUEd...........coiiiiiiiii e 30
Code 15: LOAAING PACKAGES. cevu ettt ettt ettt ettt e et e et e et e e e e e et e e e e e et e e e e et e eaaes 30
Code 16: SUMMATY COMMANG .. .uiniiiiei e e e e e e e e et e e e et e et e et et e e e st e e e s esaeeaernerneenaenaens 31
Code 17: Saving textual output to a file.......ceieiiiiii 32
Code 18: Downloading a file coNVENIENTIYoiiniiiii e 34
Code 19: Loading a CSV into an R dataframe.......c.uiiiiiiiiniii e 34
Code 20: Loading the [EM lIBrarycoeu it e e e e 34
Code 21: GENEIAtING BPLICCS .. uuiiiiieiei e et ene e enaans 34
Code 22: Saving Class10 3PLICC L0 @ file ..cuuivniiniii e 35
Code 23: EXCel HW1 Data Frameuieun ittt et e e e e e eenns 36
CodE 24: EXCEI HWL P-INQICOS. . eeuuiiineiiie ettt ettt e et s et et e et e e e e e e eeae e e e e eanes 37
(0o Yo [N AT o5 (o= I 5 AT W T o 1 1 = 37
Code 26: KR-20, KR-21.. e ittt ettt ettt e e et e et e et e e e et e e e e ee e et e eaans 37
Code 27: Advanced Coding Hinto e e e e e e e e ans 38
(00oTe LI A= T D R 1o Te [PP STSPPPPT 38
Code 29: D-Index Upper GroUp SEIECTONiiu e e e e e et e et e aaaeaaaas 38
Code 30: EXCel HOMEWOIK L INPUL ... cvn it e e e e et e e e e e e e e e e e eanns 38
Code 31:SesSioN 1 BONUS HINE L ...euniie ittt et e e e e e e e e eans 39
Code 32:SesSioN L1 BONUS HINT 2 ...ceuiiiiiiiie ettt ettt e e e e e e enns 39

PO=c+1-cl+e-1.7a0-b Code 33: A CUSTOM 3PL FUNCHION .. eutniniiiniie ettt aane 40

Code 34:
Code 35:
Code 36:
Code 37:
Code 38:
Code 39:
Code 40:
Code 41:
Code 42:
Code 43:
Code 44:
Code 45:
Code 46:
Code 47:
Code 48:
Code 49:
Code 50:
Code 51:
Code 52:
Code 53:
Code 54:
Code 55:
Code 56:
Code 57:
Code 58:
Code 59:
Code 60:

O] 1T = =48 L3P 40
(o= I o K1Y 2720 T T 10 PPt 41
Installing and Loading the Person Parameter Library........ccooeeuoviiiiniiiiieiiineiineciiecei e, 42
Adding a Package Repository to the Operating Systemcooviiiiiiiiiiie e, 43
Upgrading INternal R PaCKages.uiiuiiiiiiiiiie e e e e e e e e aaas 44
Installing the Person Parameter Library..........cooiiiiiiiii e 44
Creating the appropriate data ObJECES........ivniiiii 45
EXamining the WOIKSPACEivu i e e e e e e e e e e et e et e aaaaas 45
N o1 [VA =2y 0o =] o AU 45
(o= I o LAV T 1] 10 RN 46
(o= I o KAV T U o T PN 46
Creating a dataframe for graphing.........coou i 47
DT = 1Y T = 47
New line drawing, modified I8Nconiiiiii s 48
(o= I o LAY 2B T o 1V RN 48
Making @ TCCfUNCLION ... cuieii e e e e et e e e e e e e e e e enas 49
€Y= o] o1 1o =48 T 49
Creating the ltem Information FUNCLIONSc.iiniiiii e, 50
(G =T o) o] g =Yoo 0 VTN |1 50
Making the Test INformation CUIVEceuiiiiiiiiii e e e e 50
EXCEI HWS TNPUL ..ttt et et e et e et e e et e e et e e et e e et e e et e et e eenaes 51
T g oTo] T ¥ = - | o P 52
SOME data ClEANING .. .cu i e 52
INSAll difR PACKAEE .. cn it e eeaaas 53
Calling the difRaju fUNCLIONoveie e e 53
2U=T o] 1o o [= oo | N 54
EXCEIHWO INPUL ...t et e e e e e e e e e e e et e et e e e e e e e aaeeaneen 54

